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1 Some Elementary Results on the Distribution of Primes

The beginning of Analytic Number Theory can be traced to a paper of Euler’s. His investigations began
with one of the oldest and most important questions in number theory: “How many primes are there?”
For example, on average how many primes are in a given interval of the integers? How far can this
distribution vary from the average? How random is this distribution?

A few of these questions can be answered with completely elementary methods. For example, it is
easy to see that sequences of the form (n! + 2, n! + 3, n! + 4, ..., n! + n) show that there are arbitrarily
long gaps between prime numbers. In contrast is the following result due to Euclid:

Theorem 1.1 (Euclid). There are infinitely many primes.

Proof. Suppose there were finitely many primes, p1, p2, . . . pn. Then consider the number

Q = p1 · · · pn + 1.

Clearly this number is not divisible by any prime. But it is also bigger than 1 and so (by descent) must
be divisible by some prime. This is a contradiction, therefore there must be infinitely many primes.

Although this method is certainly adequate to show that there are infinitely many primes, it does
not seem to show that there are very many primes, because Q is a relatively large number compared to
pn. To quantify such questions of how the primes distributed, we introduce the following functions:

Definition 1.2. Let π(x) be the number of positive primes less than or equal to x. Let pn be the nth
positive prime.

Euclid’s result, therefore, says that limx→∞ π(x) = ∞, or, alternately, that pn is actually defined for
all positive n. On the other hand, the result on composites mentioned above says that lim supn→∞ pn−
pn−1 = ∞, or, alternately, that for any n, π(x + n) = π(x) for infinitely many x.

It will also be very useful to have good notation for approximating the growth of functions.

Definition 1.3. We say that f(x) = g(x) + O(h(x)) if f(x)−g(x)
h(x) is bounded as x → ∞. We say that

f(x) = g(x) + o(h(x)) if f(x)−g(x)
h(x) goes to zero as x →∞. We say that f(x) ∼ g(x) if f(x)

g(x) goes to 1 as
x →∞.

Occasionally we will also use these same notations for different limit points (usually as x approaches
0 or 1). Notice that f(x) ∼ g(x) is the same as saying f(x) = g(x) + o(g(x)). Also notice that ∼ (which
is called asymptotic equality) is an equivalence relation.

A closer look at Euclid’s result allows us to get slightly stronger information on the growth of π(x)
and pn.

Proposition 1.4. pn < een

. Hence, π(x) > log log x.
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Proof. This theorem is obvious if n = 1. If n > 1, Euclid’s construction actually says that

pn ≤ p1 · p2 · · · pn−1 + 1 ≤ kp1 · p2 · · · pn−1

for any 7
6 < k. Combining the first n such equations, we see that:

pn ≤ kp1 · p2 · · · pn−1 ≤ k2(p1 · · · pn−2)2 ≤ k4(p1 · · · pn−3)4 ≤ . . . ≤ (2k)(2
n).

Clearly we can pick k such that 2k < e.

This result shows that, for example, there are at least 2 primes smaller than 100 or that there
are at least 3 primes less than 10, 000. This is clearly a horrible underestimate as π(100) = 25 and
π(10, 000) = 1, 229.

There are other classical proofs of the infinitude of primes based on similar constructive methods
which give similar bounds. For example, consider Goldbach’s proof of Proposition 1.4:

Consider the Fermat numbers, Fn = 22n

+ 1. Fermat claimed that these were all prime, but Euler
found a counterexample. However, they can still be used to prove the infinitude of primes because of
the following lemma:

Lemma 1.5. gcd(Fn, Fm) = 1 so long as n and m are distinct.

Proof. Without loss of generality, take n < m. Suppose some prime p divides both Fn and Fm. Then
−1 ≡ 22n

(mod p) and −1 ≡ 22m

(mod p). Squaring the first equation m−n times shows that 1 ≡ 22m

(mod p), which contradicts the second equation (clearly p must be odd since all the Fermat numbers are
odd). Therefore, all the Fermat numbers are pairwise relatively prime.

Now we can conclude another proof of Proposition 1.4 using this lemma. If all the Fermat numbers
were relatively prime, then each must be divisible by a different prime from all the others. So, pn ≤
Fn = 22n

+ 1. Thus, we have π(x) > log log x.

Challenge 1. Find other elementary proofs of the prime number theorem and see if any of them give a
substantively better bound on the growth of π.

2 Euler Factorization

Obviously we would like to find a much better lower bound for π(x) than log log x. The first proof of the
infinitude of primes which allows us a substantively better bound is Euler’s proof which can be found in
his book Introduction to Analysis of the Infinite. Here he actually shows that

∑
p prime 1/p diverges.

Since
∑∞

n=1 e−en

clearly converges extremely rapidly, Euler’s result will give us a substantively better
estimate on the growth of π(x). Furthermore, the argument itself is exceptional because it does not use
constructive algebraic arguments like Euclid’s and Goldbach’s, but rather an argument based on the
properties of a certain analytic function. Euler argued as follows:

“Let us consider the expression

1
(1− αz)(1− βz)(1− γz) · · · .

“When the division is carried out, we obtain the series 1 + Az + Bz2 + Cz3 + . . .. It is clear that the
coefficients A,B,C, etc. depend on the numbers α, β, γ, etc. in the following way: A is the sum of the
sum of the numbers taken singly; B is the sum of the products taken two at a time; C is the sum of the
products taken three at a time, etc., where we do not exclude products of the same factor.

“If for α, β, γ, etc. we substitute the reciprocals of some power of all the primes and let

P =
1(

1− 1
2n

) (
1− 1

3n

) (
1− 1

5n

) · · · ,
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then P = 1 + 1
2n + 1

3n + 1
4n + . . . , where all natural numbers occur with no exception.

“Because we can express the sum of the series P = 1 + 1
2n + 1

3n + 1
4n + . . . as a product of factors, it

is convenient to use logarithms. We have

log P = − log
(

1− 1
2n

)
− log

(
1− 1

3n

)
− log

(
1− 1

5n

)
− . . . .

“If we use natural logarithms, then

log P = 1
(

1
2n

+
1
3n

+
1
5n

+ . . .

)
+

1
2

(
1

22n
+

1
32n

+
1

52n
+ . . .

)
. . .

“If n = 1, then P = 1 + 1
2 + 1

3 + . . . = log( 1
1−1 ) = log(∞). Then

log log∞ = 1
(

1
2

+
1
3

+
1
5

+ . . .

)
+

1
2

(
1
22

+
1
32

+
1
52

+ . . .

)
+ . . .

“But these series, except for the first ones, not only have finite sums, but the sum of all of them
taken together is still finite, and reasonably small. It follows that the first series 1

2 + 1
3 + 1

5 + 1
5 + . . . has

an infinite sum.” (Chapter XV of Euler’s Introduction to the Analysis of the Infinite.)

As is to be expected, Euler’s argument lacks rigor at a few points, but in this case the questionable
steps are easy to identify and deal with. First we need to place the series which he discusses on a firmer
foundation.

Proposition 2.1. The series

ζ(s) =
∞∑

n=1

n−s

converges uniformly on the interval [c,∞) for any c > 1.

Proof. Since n−s is monotonically decreasing for positive s, for any N and M and any s ≥ c > 1,

M∑

n=N

n−s ≤
∫ ∞

N

x−sdx =
N1−s

s− 1
<

1
c− 1

,

which shows uniform convergence.

The key step in Euler’s proof is the following fact known as the Euler factorization of the zeta
function.

Proposition 2.2. The product
∏

p
1

1−p−s converges uniformly on the interval [c,∞) for any c > 1.
(Here as always we use the notation

∏
p (resp.

∑
p) to denote a product (resp. sum) over all positive

primes.) Furthermore for s > 1, ∏
p

1
1− p−s

= ζ(s).

Proof. The important points are that 1
1−p−s =

∑∞
k=0 p−ks and that every positive integer factors uniquely

as a product of prime powers. We consider the finite product,

∏

p<N

∞∑

k=0

p−ks =
∑

n∈SN

n−s,

where SN is the set of all integers which are products of primes less than N . But clearly [1, N) ⊆ SN .
Therefore, ∣∣∣∣∣∣

∏

p<N

∞∑

k=0

p−ks −
∑

n<N

n−s

∣∣∣∣∣∣
= ε(N, s) <

∑

n>N

n−s < sN1−s. (2.1)

Since the right hand side goes to zero as N gets large, uniformly on the interval [c,∞) for any c > 1,
our theorem is proved.
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These two results combine to give us the key formula in the middle of Euler’s argument:

log ζ(s) =
∑

p

− log
(

1− 1
ps

)
. (2.2)

Using the Taylor expansion for log is legitimate here because 0 < 1 − 1
ps < 1, and we can exchange

the order of summation because all the series involved converge uniformly and absolutely. Therefore, we
find that

log ζ(s) =
∑

p

∞∑
n=1

1
npns

=
∞∑

n=1

1
n

∑
p

1
pns

=
∑

p

1
ps

+
∞∑

n=2

1
n

∑
p

1
pns

. (2.3)

Thus far we have simply been rephrasing Euler’s arguments in the language of modern analysis. The
point where we need to do extra work is at the end. Essentially, we want to take the limit as s → 1.
Then the left hand side blows up, while the right hand side consists of the series we’re interested in plus
some finite part. But, unlike Euler, we can not say the left hand side is log log∞.

We can, however, still conclude that

lim
s→1+

∑
p

1
ps

+
∞∑

n=2

1
n

∑
p

1
pns

cannot be finite.
First, we want to show that the terms with k > 1 on the right hand side of Equation 2.3 are small

under the same limit. This is just another simple integral test:

∞∑
n=2

1
n

∑
p

1
pns

<

∫ ∞

2

∫ ∞

2

x−1y−sxdydx =
∫ ∞

2

s−1x−22−sxdx

<
1
4s

∫ ∞

2

2−sxdx =
1

8s2
2−2s <

1
32

.

So clearly the sum of the rest of the series converges in the limiting case, just as Euler claimed. This
implies that lims→1+

∑
p

1
ps cannot be finite.

Theorem 2.3 (Euler).
∑

p

1
p

diverges.

Proof. For the sake of contradiction, suppose that limN→∞
∑

p<N p−1 were actually finite. Then∑
p>N p−1 would give a uniform bound on the term

∑
p>N

1
p−s . Hence,

∑
p

1
p−s would converge uniformly

for all s ≥ 1.
Thus the interchange of limits would be valid, and

lim
N→∞

∑

p<N

1
p−1

= lim
N→∞

lim
s→1+

∑

p<N

1
p−s

= lim
s→1+

lim
N→∞

∑

p<N

1
p−s

= lim
s→1+

∑
p

1
ps

would also be finite. This is clearly a contradiction.

This proves the theorem which Euler set out to prove. Already this result shows powerful things
such as, pn grows faster on average than nr does for any r > 1. However, Euler claimed something
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stronger. Not only did he say that
∑

p
1
p diverged, he claimed that it was log log∞. By this expression

Euler seems to mean, in modern notation, that
∑

p<N

1
p

= log log N + O(1).

In order to prove this result using Euler’s methods, we would simply have to show that the Euler
factorization was approximately valid for a finite sum and s = 1, i.e.

∣∣∣∣∣∣
∏

p<N

1
1− p−1

−
∑

n<N

n−1

∣∣∣∣∣∣
< ε(N, 1)

for some nice error function. Alas, a little computation shows that this claim is not true at all. Our
computation in Theorem 2.2 shows that the error function ε(N, s) does not behave well as s → 1.

In order to prove this result we will need a bit more information about the ζ(s) near s = 1. For
many of Euler’s papers in which he considers the Euler factorization and functions like his ζ-function,
rather than considering the series, ζ(s) =

∑
n n−s, he instead looks at an alternating series:

Definition 2.4. ζ̃(s) =
∑

n(−1)n+1n−s.

This new series has the distinct advantage of converging (conditionally) for all s > 0 by the alternating
series test. If we group terms in pairs, then the series actually converges absolutely for all s > 0.

This new function also has an Euler factorization:

ζ̃(s) =
∑

n

(−1)nn−s = (1− 2−s − 4−s − . . .)(1 + 3−s + 9−s − . . .)(1 + 5−s + 25−s − . . .) . . .

=
(

2− 1
1− 2−s

) ∏

p6=3

(
1

1− p−s

)
. (2.4)

This factorization is very similar to that of the old ζ-function. In fact, we have the formula

ζ(s) =
1

1−2−s

2− 1
1−2−s

ζ̃(s) =
1

2− 21−s − 1
ζ̃(s) =

1
1− 21−s

ζ̃(s).

This new expression for ζ(s) now makes sense for any s > 0 except for s = 1 where it clearly blows
up. This lets us get a much firmer grasp on the behavior of ζ near 1.

Theorem 2.5. (cf. Janusz’s Number Fields, pp. 144-145)

lim
s→1

(s− 1)ζ(s) = 1.

Proof. If we write

(s− 1)ζ(s) =
s− 1

1− 21−s
ζ̃(s),

the limit as s → 1 actually makes sense. By a standard result from analysis, lims→1 ζ̃(s) = log 2. By
L’hôpital’s rule,

lim
s→1

s− 1
1− 21−s

=
1

log 2
.

Thus, lims→1(s− 1)ζ(s) = 1.

Therefore, by Theorem 2.5, if we consider the series

(1− s)ζ(s) =
∑

n

1− s

ns
,

it will converge uniformly in s for s ∈ [1,∞). Hence the error term (1− s)ε(N, s) actually does remain
bounded as s → 1. Thus we have shown,

5



Lemma 2.6.

lim
s→1

(1− s)

∣∣∣∣∣∣
∏

p<N

1
1− p−1

−
∑

n<N

n−s

∣∣∣∣∣∣
< lim

s→1
ε(N, s) < ε(N),

for some error function ε(N) which goes to zero as N gets large.

Theorem 2.7. ∑

p<N

1
p

= log log N + O(1).

Proof. By the lemma for all N and s > 1,

(s− 1)
∏

p<N

1
1− p−1

= (s− 1)
∑

n<N

n−s + O(1),

where by O(1) we mean the error is bounded as N → ∞ and as s → 1+. If we take logs of both sides
and use an earlier lemma,

log(s− 1) +
∑

p<N

p−s = log(s− 1) + log
∑

n<N

n−s + O(1).

Now we can cancel the log(1− s) terms and the terms we are left with are all bounded as lims→1. Thus,

∑

p<N

1
p

= log
∑

n<N

n−1 + O(1) = log log N + O(1).

Clearly it follows that there are infinitely many primes. In fact, we can extract from this theorem a
very good idea of how fast π(x) and pn grow.

We will extend pn to some monotonic real valued function px to get
∫ X

1

1
px

dx = log log X + O(1). (2.5)

We would really like to “differentiate” this equation to get something like

1
px
≈

d

dx
log log x =

1
log x

1
x

.

This would imply that px ≈ x log x. However, although integrating preserves estimates, differentiating
clearly does not. (For example, consider the fact that x sinx = O(x), but sin x + x cos x = d

dxx sin x 6=
O(1).)

What this does tell us though is that pn can not grow significantly faster than n log n. Similarly, we
can see that π(x) can not grow significantly slower than x

log x .
This phrase “significantly faster” (resp. slower) can mean any of a number of things, for example,

Proposition 2.8. For any constant k > 1 and N , there exists some n > N , pn ≥ kn log n.

Proof. Suppose to the contrary that for some constants k < 1 and N , pn < kn log n for all n > N . Thus,
if n > N ,

1
pn

<
1
k

1
n log n

.

Integrating yields ∑

N<n<x

pn <
1
k

(log log x− log log N)
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for all x > N . But by Equation 2.5, this means that for some constant c,

log log x < c− 1
k

(log log N) +
1
k

(log log x).

Since k > 1, this last equation is clearly false for large enough x.

To show a more concrete result, like pn ∼ n log n, one would need to prove something stronger about
the smoothness of pn.

It is worth noting that simply showing that there are infinitely many primes does not require any of
the above arguments. We can simply note that if there were finitely many primes, then, by looking at
the supposed finite Euler factorization, lims→1 ζ(s) would be finite.

Throughout this course we will try to emulate Euler’s argument, by finding a connection between
number theoretic information and analytic functions and then extracting more and more number theo-
retic information from better and better results concerning these analytic functions.
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Lecture # 2: Dirichlet L-functions, Dirichlet Characters and

primes in arithmetic progressions.

Noah Snyder

June 26, 2002

1 Elementary Results on Primes in Arithmetic Progressions

Dirichlet considered a question very similar to the one which inspired Euler’s introduction of the ζ-
function: namely, how the primes are distributed modulo m. The simplest question of this type is
whether are there infinitely many primes congruent to a modulo m. Obviously there can only be
infinitely many primes of this form if a and m are relatively prime. Unfortunately, this problem turned
out to be much more difficult than proving that there are infinitely many primes. Elementary results
along the lines of Euclid’s proof only sufficed to show very special cases. For example,

Proposition 1.1. There are infinitely many primes p ≡ 3 (mod 4).

Proof. Suppose there were only finitely many such primes, p1, p2, . . . , pn. Consider the number

Q = 4p1p2 . . . pn − 1.

Clearly this number is not divisible by any of the primes which are 3 modulo 4. Thus, Q ≡ 3 (mod 4)
is a product of primes all of which are 1 modulo 4. This is clearly a contradiction.

Proposition 1.2. There are infinitely many primes p ≡ 1 (mod 4).

Proof. Here we use the fact from basic number theory that −1 is a square modulo p exactly when p ≡ 1
(mod 4). Again, suppose there were only finitely many primes p1, p2, . . . , pn ≡ 1 (mod 4). Let

Q = (2p1p2 . . . pn)2 + 1.

Clearly Q is not divisible by any of the primes which are 1 modulo 4. Since −1 ≡ (p1p2 . . . pn)2 (mod Q),
any prime which divides Q must be 1 modulo 4. Again, this is a contradiction.

Although similar methods will work for m = 3 or m = 6, they are doomed to failure in general. The
above arguments generalize only to the following two results:

Proposition 1.3. Suppose H is a proper subgroup of the group of units (Z/mZ)×. Then there exist
infinitely many primes which are not in H when reduced modulo m.

Proof. Suppose there were only finitely many such primes, p1, p2, . . . , pn. Consider the number

Q = mp2 · p3 · · · pn + p1.

Clearly this number is not divisible by any of the primes which are not in H. Thus, Q ≡ x (mod m) is
a product of primes all of which are in H. This is clearly a contradiction.

Proposition 1.4. There are infinitely many primes congruent to 1 modulo m for any m.

Proof. Let Φm(x) be the mth cyclotomic polynomial (that is the minimal polynomial of a primitive
mth root of unity). Suppose there are finitely many primes p1, p2, . . . , pn ≡ 1 (mod m). Let N =
m · p1 · p2 · · · pn. Consider Φm(N). Suppose that a prime q divides Φm(N). Then, modulo q, we must
have a primitive mth root of unity. Therefore, q ≡ 1 (mod m). Thus q = pi for some i. However, none
of the pi can divide Φm(N). This is a contradiction.
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In fact, using class field theory, one can show that it is impossible to find a polynomial which outputs
only numbers divisible by primes congruent to a (mod m) for a general relatively prime pair a and m.

Rather than trying to use these sorts of elementary proofs, Dirichlet instead tried to adapt Euler’s
analytic methods to this situation.

2 A Special Case of Dirichlet’s Theorem

In particular, Dirichlet wanted to prove

Theorem 2.1. For any relatively prime positive integers a and m, the series
∑

p≡a (mod m)

1
p

diverges.

Let us first consider the particular case m = 4. Since we will consider things more rigorously in the
general case, here we shall be a bit lax.

The most obvious attempt at modifying Euler’s method is to consider the function

f1(s) =
∏

p≡1 (4)

1
1− p−s

.

By the same arguments as used the last section we can conclude that
∑

p≡1 (4)

p−s = log f1(s) + O(1).

Unfortunately, f1(1) does not obviously diverge. If we multiply out the Euler product, we see that

f1(s) =
∑

n∈S

n−s,

where S is the set of all numbers which are products of primes which are 1 modulo 4. This is entirely
unhelpful. We need to find some functions whose Euler factorizations depend only on what the prime is
modulo 4, and where the terms in the series do not depend on the prime factorization of n.

Dirichlet’s insight was to look at the functions

L1(s) =
∑

n odd

(−1)
n−1

2 n−s =
∏

p≡1 (4)

1
1− p−s

∏

p≡3 (4)

1
1 + p−s

L0(s) =
∑

n odd

n−s =
∏

p≡1 (4)

1
1− p−s

∏

p≡3 (4)

1
1− p−s

= (1− 2−s)ζ(s).

Just as in the last section, we can take logarithms and use the Taylor series expansion. As in the
last section the contribution from quadratic and higher terms in the Taylor series are bounded. Thus,

log L1(s) =
∑

p≡1 (4)

p−s −
∑

p≡3 (4)

p−s + O(1)

log L0(s) =
∑

p≡1 (4)

p−s +
∑

p≡3 (4)

p−s + O(1)

Therefore,

1
2
(log L0(s) + log L1(s)) =

∑

p≡1 (4)

p−s + O(1)

1
2
(log L0(s)− log L1(s)) =

∑

p≡3 (4)

p−s + O(1)
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Thus in order to prove this special case of Theorem 2.1, we need only show that log L0(s)+ log L1(s)
and log L0(s) − log L1(s) are both unbounded as s → 1+. Obviously (1 − 2−s)ζ(s) blows up at s = 1.
Hence we’ve reduced this problem to showing that log L1(1) is finite.

But, L1(s) is an alternating series; thus, we can bound it by the first two partial sums, i.e. 2
33−s <

L1(s) < 1. Thus log 2
3 < log L1(1) < 0, so we have proved Theorem 2.1 for the case of m = 4.

3 Some General Results on Dirichlet Series

Before we attack the general proof of Theorem 2.1, it will be useful to have a few technical definitions
and results.

Definition 3.1. A Dirichlet series is a series of the form,

f(s, an) =
∞∑

n=1

an

ns
,

where an is some sequence of complex numbers.

We will want to know when a Dirichlet series actually converges. In order to prove this, we will need
the following theorem which is the analog for sums of integration by parts.

Theorem 3.2 (Abel Summation Formula or Summation by Parts). Suppose (an) and (bn) are
two sequences. Then

∑N
n=` an(bn − bn−1) = aNbN − a`b` −

∑N
n=` bn−1(an − an−1).

Proof. To verify this theorem, we simply check that each term aibj occurs with the same multiplicity on
both sides.

Using the notion of a Stieltjes integral we can rewrite the Abel Summation Formula as a generalization
of integration by parts.

Definition 3.3. Let α be a non-decreasing (not necessarily continuous function) on [a, b] and f a
function bounded on [a, b]. Let P be some partition of [a, b], let ∆αi = α(xi)−α(xi−1). Define the upper
and lower sums, U(P, f, α) =

∑n
i=1 Mi∆αi and U(P, f, α) =

∑n
i=1 mi∆αi, where Mi and mi are the

maximum and minimum respectively of f on the ith interval in the partition. We define the upper and

lower Stieltjes integrals to be
∫ b

a
fdα = glb U(P, f, α) and

∫ b

a
fdα = lub U(P, f, α). If the upper and lower

integrals are equal we denote their common value by
∫ b

a
fdα and say that f is integral with respect to α.

For our purposes we will only be looking at Stieltjes integrals where either α is differentiable in which
case

∫ b

a
fdα =

∫ b

a
f(x)α′(x)dx or when α is a step function. In the latter situation the integral is simply

a sum over the jumps of the value of the function at that jump times the size of the jump. For example,∫ b

a
fdbxc =

∑
n∈Z∩(a,b) f(n). Lastly in the case of α a step function, we shall always take the value of

α at each jump to be halfway between the values on either side. Although this is simply a convention,
later on it will hopefully become clear why it is such a useful one.

In the context of a Stieltjes integral, summation by parts is simply a special case of integration by
parts which holds for all Stieltjes integrals. (This is slightly misleading, in reality one uses summation
by parts to prove this general integration by parts formula.) Generally we will prefer to write things as
Stieltjes integrals and use integration by parts, but occasionally we will directly refer to Abel Summation.

Proposition 3.4. If
∑

ann−s0 converges, then the Dirichlet series f(s, an) converges for all complex
numbers s with Re(s) > s0. In fact, this convergence is uniform in any wedge to the right of the point
s0: {s : Re(s) > Re(s0) and 0 < |s−s0|

Re(s−s0)
< M}, where M is an arbitrary positive constant. (Since this

convergence is uniform, f(s, an) is analytic on that region.)

Proof. Letting M grow arbitrarily shows that the second assertion implies the first. Without loss of
generality, we can assume s0 = 0 (since we can look at the Dirichlet series

∑
n(ann−s0)n−s). Also,

without loss of generality, we can subtract off the first term a1 and so assume a1 = 0.
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Since we are assuming that
∑

n an converges for any ε > 0, there exists an integer N such that for
any `,m > N , |A`,m| < ε.

We want to get a good bound on |∑m
n=` ann−s|. By Abel’s summation formula,

∣∣∣∣∣
m∑

n=`

ann−s

∣∣∣∣∣ =

∣∣∣∣∣A`,mbm −
m∑

n=`

A`,m((n + 1)−s − n−s)

∣∣∣∣∣ < ε

(
1 +

m∑

n=`

∣∣∣e−s log n − e−s log(n+1)
∣∣∣
)

.

To get a bound on that last term, we notice that for any α > β ≥ 0,

e−αz − e−βz = z

∫ β

α

e−tzdt.

Therefore,
∣∣e−αz − e−βz

∣∣ ≤ |z|
∫ β

α

e−tRe(z)dt =
|z|

Re(z)

(
e−αRe(z) − e−βRe(z)

)
.

Applying this to our particular case, we see that
∣∣∣∣∣

m∑

n=`

ann−s

∣∣∣∣∣ < ε

(
1 + M

m∑

n=`

e−Re(s) log n − e−Re(s) log(n+1)

)

= ε
∣∣∣1 + M(e−Re(s) log `)− e−Re(s) log(m)

∣∣∣ < ε(1 + M).

Thus for large enough N , this goes to zero independently of s, so the series converges uniformly in this
region.

It turns out that if a function can be written as a Dirichlet series then it can be done so in only one
way.

Proposition 3.5. cf. [?, Thm. 11.4] Suppose that
∑

n
an

ns = 0 on some right halfplane Re(s) > σ0.
Then, an = 0 for all n. Therefore, if we have two Dirichlet series with

∑
n

bn

ns =
∑

n
cn

ns for all Re(s) >
σ0, then bn = cn for all n.

Proof. Without loss of generality, by considering ann−σ0 we can assume that σ0 = 0. Thus, in order to
have

∑
n

an

ns converge near s = 0, we must have an = O(1). Now suppose that aN is the first non-zero
term. Then

0 = aNN−s


1 +

∑

n≥N

an

aN

( n

N

)−s


 .

Multiplying by Ns we get

0 = aN


1 +

∑

n≥N

an

aN

( n

N

)−s


 .

Now send s → +∞+0i. Each of the terms in the sum dies exponentially. Therefore, since the coefficients
are bounded, the whole sum dies. Therefore, 0 = aN . This is a contradiction; therefore, an = 0 for all
n.

For the second conclusion, we simply consider the Dirichlet series
∑

n
bn−cn

ns = 0, from which it
follows that bn − cn = 0 and thus bn = cn for all n.

Definition 3.6. A sequence an is called multiplicative if anam = anm for all relatively prime positive
integers n and m. Similarly, a sequence an is called strongly multiplicative if anam = anm for all pairs
of positive integers.
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Theorem 3.7. If an is multiplicative then the Dirichlet series f(s, an) has the Euler factorization:

f(s, an) =
∏
p

∞∑

`=1

apk

psk
.

Furthermore if an is strongly multiplicative, summing this geometric series we see that

f(s, an) =
∏
p

1
1− ap

ps

.

Proof. The proof here is identical to the proof of Theorem ??.

Finally we have a formula for the product of two Dirichlet series.

Proposition 3.8. f(s, an)f(s, bn) = f(s,
∑

d|n adbn
d
).

Proof. By definition,

f(s, an)f(s, bn) =
∞∑

m=1

∞∑

`=1

amb`

(m`)s
.

Make a change of variables n = m` and d = m to get,

f(s, an)f(s, bn) =
∞∑

n=1

∑

d|n

adbn
d

ns
= f(s,

∑

d|n
adbn

d
).

4 Dirichlet’s L-series

In order to generalize Dirichlet’s argument from the case of m = 4 to a general m, we should look at all
Dirichlet series with particularly nice Euler factorizations in which ap depends only on what n is modulo
m and vanishes when p|m. From our results above, it is clear that we should be looking at the series
corresponding to sequences of the following form:

Definition 4.1. Let a Dirichlet character modulo m be any function from χ : Z→ C with the properties:

1. If n and m are not relatively prime, then χ(n) = 0.

2. If n and m are relatively prime, then |χ(n)| = 1.

3. If n1 and n2 are any two positive integers, then χ(n1n2) = χ(n1)χ(n2).

If we restrict a Dirichlet character to (Z/mZ)× we get a homomorphism. (By abuse of notation,
we will also call it χ : (Z/mZ)× → C×.) Furthermore, if one considers any homomorphism χ :
(Z/mZ)× → C× it will be a Dirichlet character modulo k for any m|k. If χ is an injective homomorphism
(Z/mZ)× ↪→ C×, then we say that the corresponding Dirichlet character is a primitive character modulo
m. The homomorphism sending everything to 1 and the corresponding Dirichlet character will both be
called trivial.

The above notion of homomorphisms χ : (Z/mZ)× → C× generalizes to the more general notion of
an abelian group character, which is a homomorphism χ : G → C× where G is an abelian group.

As far as I can tell, the linguistic history of this term character is quite the opposite of what one
might expect. The notion of a Dirichlet character came before the notion of a general character, and the
name character seems to come from the fact that it is a generalization of the quadratic character that
is the quadratic nature of a number modulo m.
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Definition 4.2. If χ is a Dirichlet character modulo m, then define the Dirichlet L-series

L(s, χ) =
∞∑

n=1

χ(n)n−s =
∏
p

1

1− χ(p)
ps

.

If χ0 is the trivial character modulo m, then obviously

L(s, χ0) =
∏

p|m

(
1− χ(p)

ps

)
ζ(s)

converges for any Re(s) > 1.
For a nontrivial character, we certainly could get the same region of convergence since

∑
n χ(n)n−s <∑

n |χ(n)|n−s. However, we might hope to find some cancellation and be able to find a larger region of
convergence.

Lemma 4.3 (Dirichlet). If G is an abelian group, and χ is a nontrivial character of that group, then
∑

g∈G

χ(g) = 0.

Proof. For any h ∈ G, notice that

χ(h)
∑

g∈G

χ(g) =
∑

g∈G

χ(hg).

But, as g runs over all of G, so does hg. Hence,

χ(h)
∑

g∈G

χ(g) =
∑

g∈G

χ(g).

Therefore, either χ(h) = 1 or
∑

g∈G χ(g) = 0. Since χ is nontrivial, we can choose h so that the former
condition is not true. Thus the lemma is proved.

Corollary 4.4. If χ is a nontrivial Dirichlet character modulo m, then L(s, χ) converges for Re(s) > 0.

Proof. By Lemma 4.3, we know that
∑

n χ(n) is bounded. Thus,
∑

n χ(n)n−s converges for any positive
s, which by Proposition 3.4 is enough.

5 Reducing Dirichlet’s Theorem to an Analytic Theorem

Now that we have proved enough technical results, we can return to Dirichlet’s original question. Fol-
lowing Euler, we notice that

log L(s, χ) =
∑

p

log
1

1− χ(p)
ps

.

Again the Taylor series expansion is valid, and our estimate on the terms still holds:
∣∣∣∣∣
∞∑

n=2

1
n

∑
p

χ(p)
pns

∣∣∣∣∣ <

∫ ∞

2

∫ ∞

2

x−1y−sxdydx <
1
32

.

Therefore,
log L(s, χ) =

∑
p

χ(p)p−s + O(1).

To get Dirichlet’s result, we need to write fa(s) =
∑

p≡a (m) p−s as a sum of log L(s, χ) for various χ.
We know that

log L(s, χ) =
∑

a∈(Z/mZ)×
χ(a)fa(s) + O(1).

In order to get this result, Dirichlet noticed and proved a finite analog of Fourier inversion called the
orthogonality of characters.
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Theorem 5.1 (Dirichlet). If χ1 and χ2 are distinct characters of a finite abelian group G, then
∑

g∈G

χ1(g)χ2(g)−1 = 0.

Furthermore, if we let G∗ denote the dual group of characters of G, then, if g 6= h,
∑

χ∈G∗
χ(gh−1) = 0.

Proof. The first assertion follows immediately from applying Lemma 4.3 to the character χ1χ
−1
2 . To-

gether with the obvious fact that
∑

g∈G χ(g)χ(g)−1 = |G|, this implies that the matrix (χ(g)
|G| )χ,g has

orthogonal rows. By the structure theorem for finite abelian groups, it is easy to see that |G| = |G∗|
(since it is obvious for cyclic groups). Thus this matrix is a square matrix. By standard linear algebra
we know that having orthogonal columns is the same as having orthogonal rows and the second half of
the result follows.

Thus by Theorem 5.1, we see that the characters χ are all linearly independent and thus form a basis
of the space of all complex valued functions on G. In particular,

1
|G|

∑

χ∈G∗
χ(h−1)χ(g) =

{
1 if g=h
0 otherwise .

Therefore, if we let G = (Z/mZ)×,

fa(s) =
1
|G|

∑

χ∈G∗
χ(a−1) log L(s, χ) + O(1).

Since log L(1, χ0) blows up, and log L(1, χ) < ∞ for all nontrivial characters, all that remains is
to show that log L(1, χ) > −∞. That is to say, we have shown that Theorem 2.1 is equivalent to the
following theorem:

Theorem 5.2 (Dirichlet). If χ is a nontrivial Dirichlet character, then L(1, χ) 6= 0.

Proof. First we claim that for every m there is at worst one χ with L(1, χ) = 0. Notice that

∑

χ∈G∗
log L(s, χ) = ϕ(m)

∞∑

k=1

1
k

∑

p: pk≡1 (m)

p−ks > 0.

Now we already know that lims→1+(s − 1)L(s, χ0) is finite. Hence, log L(s, χ0) = log 1
s−1 + O(1). But

we know by Theorem 3.4 that for all the other χ 6= χ0, L(s, χ) are analytic near 1. Therefore, for all of
these, log L(s, χ) either goes to −∞ or is bounded.

Suppose one of these series, for instance L(s, τ), had a zero at 1. Since it is analytic, by considering
the Taylor expansion, L(s,τ)

s−1 is analytic and bounded at 1. Hence, log L(s, τ) = − log(s− 1) + O(1). So,
if we had L(1, τ1) = L(1, τ2) = 0, then

∑

χ∈G∗
log L(s, χ) = log(s− 1)− 2 log(s− 1) + ε(s),

where ε(s) is either bounded or goes to −∞ as s → 1+. Thus, the right hand side would be negative for
small enough s, and we’ve reached a contradiction.

Notice that this proves the theorem for every character whose image is not contained in the reals. In
this case there is a distinct character χ̄(n) = χ(n) with L(1, χ) = 0 ⇐⇒ L(1, χ̄) = 0.

Furthermore, this shows that there is at worst 1 primitive Dirichlet character with L(s, χ) = 0. If
there were two, say one primitive modulo m1 and the other primitive modulo m2, then we could consider
both of them as Dirichlet characters modulo m1m2. Thus their L-series modulo m1m2 would differ from
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the originals by only finitely many terms. Thus there would be two different Dirichlet L-series modulo
m1m2 with L(1, χ) = 0, which is a contradiction.

So we have proven this theorem for all but one primitive character which must be real. Any real
primitive character modulo m must have, for g a generator of Z/mZ, χ(gk) = (−1)k. Clearly, this means
χ(a) is 1 or −1 exactly when a is a square or a non-square respective. Thus, χ(a) =

(
a
m

)
.

Dirichlet spent several years trying to prove that L(1,
( ·

m

)
) 6= 0. Eventually he was able to prove

this using his famous class number formula, which we will prove (in part) in a later lecture. In next
week’s homework we will give Dirichlet’s proof in the special case of m is prime. Finally the next week
in homework we will be giving a much faster modern proof of the general case.
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Lecture # 3: A Review of Fourier Analysis.

Noah Snyder

July 1, 2002

For a more in-depth presentation of this subject material, see any standard intermediate analysis
textbook. For example, Lang’s Undergraduate Analysis or Real and Functional Analysis. This particular
treatment is adapted from Tom Brennan’s notes on Analytic Number Theory.

1 Fourier Series

Suppose f is a continuous function of a real variable which is periodic with period one. These function
can be identified with function on the unit circle. Fourier attempted to write such functions as a sum of
simple functions like sines and cosines. In particular, suppose we could write

f(x) =
∑

n∈Z
ane2πinx.

To recover to coefficients an Fourier noticed that
∫ 1

0
e2πinxdx = δn0. Thus,

∫ 1

0

∑
n∈Z ane2πinxdx = a0,

and ∫ 1

0

(∑

n∈Z
ane2πinx

)
e−2πimxdx = am.

Therefore, if one can express f as a sum of these exponentials, then

am =
∫ 1

0

f(x)e−2πimxdx.

Definition 1.1. The nth Fourier coefficient of f is f̂(n) =
∫ 1

0
f(x)e−2πinxdx.

Our goal is to show that
∑

n∈Z f̂(n)e2πinx converges uniformly to f , so long as we put adequate
conditions on f . Let Ck(S1) denote the k-times continuously differentiable functions of period 1.

Proposition 1.2. For f ∈ C0(S1), lim
|n|→∞

f̂(n) = 0.

Proof. We can put the sup metric on C0(S1). With this topology, lim
|n|→∞

f̂(n) is a continuous function

of f . Thus in order to show that it is 0 it is enough to show this on a dense subset. However, the space
of linear combinations of characteristic functions of intervals is dense, hence it suffices to prove this
theorem on this set. Furthermore, since lim

|n|→∞
f̂(n) is linear, it is enough to show this fact for individual

characteristic functions of intervals.
So consider f(x) the characteristic function of the interval [a, b]. By the definition,

f̂(n) =
∫ b

a

e−2πinxdx =
1

−2πin

(
e−2πinb − e−2πina

)
.

Therefore, |f̂(n)| < 1
π|n| . Thus, lim

|n|→∞
f̂(n) = 0.
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Definition 1.3 (The Dirichlet Kernel). Let DN (t) =
∑
|n|≤N e2πint.

Notice that DN ∈ C0(S1) and that
∫ 1

0
DN (t)dt = 1. Finally, by summing the geometric series and

using a trig identity, we see

DN (t) =
sin(2π(N + 1

2 )t)
sin(πt)

= cos(2πNt) + cot(πt) sin(2πNt).

Proposition 1.4. Suppose f ∈ C1(S1), and define the N th partial sum of the Fourier series of f to be
sN (x, f) =

∑
|n|≤N f̂(n)e2πix. These partial sums converge to f pointwise.

Proof. Notice in terms of the Dirichlet kernel,

sN (x, f) =
∑

|n|≤N

e2πinx

∫ 1

0

f(t)e−2πintdt =
∫ 1

0

f(t)DN (x− t)dt

=
∫ 1−x

−x

f(x + u)DN (u)du =
∫ 1

0

f(x + u)DN (u)du.

Therefore,
∣∣∣∣
∫ 1

0

f(x + t)DN (t)dt− f(x)
∣∣∣∣ =

∣∣∣∣
∫ 1

0

(f(x + t)− f(x))(cos(2πNt) + cot(πt) sin(2πNt))dt

∣∣∣∣ .

If we let g1 = (f(x + t)− f(x)) and g2 = g1 cot(πt), then
∣∣∣∣
∫ 1

0

f(x + t)DN (t)dt− f(x)
∣∣∣∣ = |Re(ĝ1(N)) + Im(ĝ2(N))| .

Notice that g1 and hence g2 are both in C0(S1), thus by Proposition 1.2
∣∣∣
∫ 1

0
f(x + t)DN (t)dt− f(x)

∣∣∣ → 0
as we had hoped.

2 Fourier Integrals

Similarly, one might hope to express any function on the real line in terms of generalized exponentials of
the form e2πixt, however one can no longer expect x to be an integer or else one could only get periodic
functions. That is we would like to be able to write f(x) =

∫
R g(y)e2πixydy for some function g. In

order to recover the function g, one can try integrating with respect to x over the whole real line. Since∫
R e2πixydx = δ(y) (where δ is the dirac Delta function),

∫
R f(x)dx = g(0) and

∫
R f(x)e−2πixydx = g(y).

This result is called the Fourier inversion formula. Obviously have not yet given a rigorous proof.

Definition 2.1. If f ∈ L1(R) then we define the Fourier transform f̂(y) =
∫
R f(x)e−2πixydx.

Unfortunately the notation for the Fourier transform and the Fourier coefficients are identical. One
can distinguish the two situations by looking at f and seeing whether it is a function on the circle or on
the real line.

Proposition 2.2. If f ∈ L1(R) then lim
|y|→∞

f̂(y) = 0.

Proof. As with the analogous result for Fourier series we first note that lim
|y|→∞

f̂(y) is a continuous

and linear function. Therefore it suffices to prove this result for f the characteristic function of [a, b].
Again,

∫
R f(x)e−2πixydx =

∫ b

a
e−2πixy = 1

−2πin

(
e−2πinb − e−2πina

)
. Therefore, |f̂(n)| < 1

π|n| . Thus,

lim
|n|→∞

f̂(n) = 0.
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Before proving the Fourier inversion formula we will need to have a family of functions whose trans-
form is known, just as we knew the Fourier series for the Dirichlet kernel.

Proposition 2.3. Let c be any complex number with Re(c) > 0. Let fc(x) = e−cπ|x|2 Then, its Fourier
transform is f̂c(y) = 1√

c
e−πy2/c = 1√

c
f 1

c
.

Proof. Notice,

f̂(y) =
∫

R
e−cπ|x|2e2πixydx =

1√
c
e−πy2/c

∫

R
e−(x−iy/c)2dx.

The last integral can be evaluated with Cauchy’s theorem. Let γT be the parallelogram whose corners
are ±T and ±T + iy/c. Let g(z) = e−π(z−iy/c)2 . Then g(z) is holomorphic and its integral around γT

is zero. The integral of g(z) along the left and right sides of γT goes to zero as T → ∞. Therefore,∫
R e−π(x−iy/c)2dx =

∫
R e−πx2

dx. In order to evaluate this last integral, make the change of variables
u = πx2 to get ∫

R
e−πx2

dx =
1

2
√

π

∫

R
euu−1/2du =

1
2
√

π
2Γ

(
1
2

)
= 1.

Therefore, f̂(y) = 1√
c
e−πy2/c.

Theorem 2.4 (Fourier Inversion). If f and f̂ are in L1(R), then f(x) =
∫
R f̂(y)e2πixydy.

Proof. Notice, ∫

R
f̂(y)e2πixydy = lim

ε→0+

∫

R
f̂(y)fε(y)e2πixydy.

Using the definition of f̂(y), we can rewrite the second integral as
∫

R

(∫

R
f(te−2πitydt

)
fε(y)e2πixydy.

Because all integrals converge absolutely by Fubini we can switch the order of integration to get
∫

R
f(t)

(
∈R fε(y)e−2πi(t−x)ydy

)
dt.

The inner integral is just f̂ε(t− x) = 1√
ε
f 1

ε
(t− x) = 1√

ε
f 1

ε
(x− t). Thus our favorite integral becomes

1√
ε

∫

R
f(t)f 1√

ε
(x− t)dt.

Make the change of variables t 7→ √
ε(x− t) to get

∫

R
f̂(y)e2πixydy = lim

ε→0+

∫

R
f(x−√εt)e−πt2dt = f(x).

Now notice that this result only holds up to differing by a function with trivial integral. In particular,
if f is a step function we are not guaranteed that we get back from Fourier inversion the same values on
the jumps. However, Fourier inversion does give some canonical choice of value on these jump points.
To calculate this value notice that in the last step there will be different limits depending on whether
t is positive or negative. The final value gotten is thus 1

2 (f(x+) + f(x−)). Thus the natural choice for
step functions if we want them to behave well under Fourier transforms is to choose the value at each
jump to be halfway between the other two values. For the rest of the course we will take this convention
any time we discuss step functions.
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3 General Theory

Thus far we have seen several examples of “Fourier Theories” in the form f̂(y) =
∫

G
f(x)φ(x, y)dµ. The

following table shows exactly what each term is for each case:
Fourier Theory: G is f(x) domain: f̂(y) domain: φ(x, y) is: dµ is:
Fourier Series (one direction) S1 S1 Z e−2πxy dx
Fourier Series (the other direction) Z Z S1 e2πxy dbyc
Fourier Integrals R R R e2πxy dx
Orthogonality of Characters G G G∗ χ(g) 1

|G|dg

All of these situations fall into the following general idea. Let G be a Locally Compact Abelian
Lie Group. Let G∗ be the group of continuous homomorphisms from G to S1. Choose dµ to be the
normalized Haar measure on G. Define the Fourier transform of f : G → C to be f̂(y) =

∫
G

y(x)dµ.
One can prove that under suitable conditions G∗∗ = G. Thus we can apply this transforming process
twice. As in all of the above cases the function we recover is f(−x).

4 Melin Transform

The only remaining group for which we will need a Fourier theory for is the positive reals under multi-
plication, which we shall denote R×+. Characters on this group take the form xs where s is a complex
number. Thus we expect a Fourier theory of the following form:

Definition 4.1. Take f : R×+ → C. Define the Mellin transform (where it converges) to be F (s) =∫∞
0

f(x)xs dx
x .

Notice that if this converges for s0 then it converges for the halfplane to the right of s0.

Definition 4.2. Take F a function from a right halfplane in C to C. Define the inverse Mellin transform
to be (for σ such that it actually converges) f(x) = 1

2πi

∫ σ+i∞
σ−i∞ F (s)x−sds.

Theorem 4.3 (Mellin Inversion Formula). Let f : R×+ → C be a function and s = σ+it be a complex
number such that the Mellin transform f is defined. Furthermore assume the integral

∫∞
−∞ F (σ + it)dt

converges absolutely. Then

f(x) =
1

2πi

∫ σ+i∞

σ−i∞
F (s)x−sds.

Proof. As explained above one can prove this result from a more general theory. However, since R×+ is
isomorphic to R under the logarithm map, we can deduce this result from traditional Fourier inversion.
Make the change of variable x = e2πu to get

F (s) =
∫

R
(2πf(e−2πu)e−2πuσ)e−2πutdu.

By Fourier inversion

2πf(e−2πu)e−2πuσ =
∫

R
F (σ + it)e2πiutdt.

Changing variables back to x = e2πu and rearranging terms yields,

f(x) =
1
2π

∫ ∞

−∞
F (σ + it)x−(σ+it)dt.
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5 Poisson Summation Formula

Before turning to our main result we need one lemma.

Proposition 5.1. If f ∈ C2(R) and f, f ′, f ′′ ∈ L1(R), then |f̂(y)| ≤ c(1 + |y|)−2 for some constant c
which depends on f .

Proof. We simply apply integration by parts.

|f̂(y) =
∣∣∣∣
∫

R
f(x)e−2πixydx

∣∣∣∣ ≤
∫

|x|<1

|f(x)|dx +
1

|2πy|

∣∣∣∣∣
∫

|x|≥1

f ′(x)e−2πixydx

∣∣∣∣∣

≤ C +
1

|2πy|2

∣∣∣∣∣
∫

|x|≥1

f ′′(x)e−2πixydx

∣∣∣∣∣ .

Therefore, |f̂(y)| ≤ c(1 + |x|)−2.

Theorem 5.2 (Poisson Summation Formula). Let f ∈ C2(R) be a function for which |f(x)|, |f ′(x)|,
and |f ′′(x)| are all bounded by c(1 + |x|)−2 for some fixed constant c. Then, letting f̂ be the Fourier
transform, ∑

n∈Z
f(n) =

∑

n∈Z
f̂(n).

Proof. Let F (x) =
∑

k∈Z f(x + k). Because of our bound on f(x), F must converge uniformly to a
continuous function which clearly is periodic with period 1. Furthermore, since its first two derivatives
are also nicely bounded, F is a twice continuously differentiable function. Thus we can apply Theorem
1.4 to get

F (x) =
∑

n∈Z
F̂ (n)e2πinx,

for all x ∈ R.
We turn to calculating F̂ (n). Notice,

F̂ (n) =
∫ 1

0

f(θ + k)e−2πinθdθ =
∫

R
f(θ)e−2πinθdθ = f̂(n).

(The switching of summation and integration is justified because of the bound we have on |f(x)|.)
Therefore, ∑

k∈Z
f(x + k) = F (x) =

∑

n∈Z
f̂(n)e2πinx.

Taking x = 0 gives our result.

6 Two Applications of Poussin Summation

Proposition 6.1.
∑∞

n=1
1

ε2+n2 = − π
2ε − 1

2ε2 + π
ε

1
1−e−2πε .

Proof. Let f(x) = e−2πixy. By definition,

f̂(y) =
∫

R
f(x)e−2πxydx =

∫ ∞

0

e−2π(ε+iy)xdx +
∫ ∞

0

e−2π(ε−iy)xdx

=
1

2π(ε + iy)
+

1
2π(ε− iy)

=
ε

π(ε2 + y2)
.

Now we can apply the Poisson summation formula to get

2ε

π

∞∑
n=1

1
ε2 + n2

+
1
επ

=
∑

n∈Z
f̂(n) =

∑

n∈Z
f(n) = −1 +

2
1− e−2πε

.
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Rearranging we see that,
∞∑

n=1

1
ε2 + n2

= − π

2ε
− 1

2ε2
+

π

ε

1
1− e−2πε

.

Although we shall need this full result at some point later, one nice application is that we can compute
ζ(2). If we expand the last term as a Taylor series in ε, we get,

∞∑
n=1

1
ε2 + n2

= − π

2ε
− 1

2ε2
+

π

ε

1
2πε

(
1 + πε +

1
3
π2ε + . . .

)
=

π2

6
+ O(ε).

Therefore, ζ(2) = π2

6 .
Our second application is the functional equation of the Jacobi theta function.

Definition 6.2. Let θ(z) =
∑

n∈Z eiπn2z.

Notice that this sum converges for all z in the upper halfplane, because |θ(z)| < 1+2
∫∞
0

e−tIm(z)dt =
1 + 2

Im(z) .

Proposition 6.3. θ(z) satisfies the symmetry:

θ(−1/z) =
√−izθ(z).

Here the square root denotes the usual branch which is positive on R+.

Proof. Let fz(x) = eiπ|x|2z. Recall that f̂z(y) = 1√−iz
f 1

z
(y).

Now we apply the Poussin summation formula:

θ(z) =
∑

m∈Z
fz(m) =

∑

m∈Z
f̂z(m) =

1√−iz

∑

m∈Z
e−iπm2/z =

1√−iz
θ(−1/z).

Therefore,
√−izθ(z) = θ(−1/z).
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Lecture # 4: The Analytic Continuation and Functional

Equation of Riemann’s Zeta Function.

Noah Snyder

July 3, 2002

As we mentioned before, by getting more information about the ζ-function we can recover more
information about prime numbers. In this lecture we will explain how to extend the ζ-function to the
entire complex plane, look at some of its basic properties there, and discuss how Riemann outlined using
these properties to get good information about the prime numbers.

1 Continuing ζ to the Line Re(s) = 0.

Theorem 1.1. The ζ-function can be meromorphically continued to the right halfplane Re(s) > 0 with
a simple pole of order 1 at s = 1 and no others.

Proof. Let ζ2(s) = −1−s + 2−3 − 3−s + 4−s − . . .. By our earlier result, this converges for Re(s) > 0.
Notice that

ζ(s) + ζ2(s) = 2
∑

2|n
n−s = 2

1
1−2−s − 1

1
1−2−s

ζ(s).

Therefore, ζ(s) + ζ2(s) = 21−sζ(s). Hence, ζ(s) = 1
21−s−1ζ2(s). The righthand side makes sense for any

Re(s) > 0 except for possible simple poles at s = 1 + 2πi log2(n) for n ∈ Z.
But we can go through a similar argument for 3. That is, let ζ3(s) = −1−s−2−s +2 ·3−s−4−s− . . ..

Again this converges for Re(s) > 0. Furthermore,

ζ(s) + ζ3(s) = 3
1

1−3−s − 1
1

1−3−s

ζ(s).

Therefore, ζ(s) = 1
31−s−1ζ3(s). This expression makes sense for any Re(s) > 0 except for possible simple

poles at s = 1 + 2πi log3(n) for n ∈ Z.
Combining these two results, we’ve shown that ζ(s) can be continued to Re(s) > 0 with poles only

at numbers both of the form s = 1 + 2πi log3(n) and s = 1 + 2πi log2(m). Thus we need to find any
integers m and n such that log3(n) = log2(m). That is to say, 2n = 3m. By unique factorization, this
only happens when n = m = 0. Thus the only pole is at s = 1.

There is another proof of this result.

Proof. Notice that ζ(s) =
∫∞
1− x−sdbxc. Integrating by parts, we see ζ(s) = s

∫∞
1− x−s−1bxcdx. Notice

that bxc = x− {x} where {x} denotes the fractional part. Therefore,

ζ(s) = s

∫ ∞

1−
x−sdx− s

∫ ∞

1−
x−s−1bxcdx = −1 +

1
1− s

− s

∫ ∞

1−
x−s−1bxcdx.

Notice that this last integral is bounded by
∫∞
1− x−s−1dx, and so converges for any Re(s) > 0. Thus we

have a formula which agrees with ζ and makes sense on the halfplane Re(s) > 0 except for a simple pole
at s = 1.
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2 Continuing Beyond Re(s) = 0 and the Functional Equation

Theorem 2.1 (Functional Equation of the ζ-function). The ζ-function can be meromorphically
continued to the entire complex plane with a single pole at s = 1. Furthermore, this function satisfies
the functional equation

Γ(s)π−sζ(2s) = Γ
(

1
2
− s

)
π−

1
2+sζ(1− 2s).

Proof. Take the definition of the Gamma function and make the change of variables x → n2πx to get

n−2sπ−sΓ(s) =
∫ ∞

0

e−n2πxxs dx

x
.

Again we sum over all n and use uniform convergence to interchange sum and integral to get

ζ(2s)π−sΓ(s) =
∫ ∞

0

1
2
(θ(ix)− 1)xs dx

x
.

Now we can apply the functional equation of the θ function to the right hand side:

ζ(2s)π−sΓ(s) =
∫ ∞

0

1
2
(θ(ix)− 1)xs dx

x
=

∫ 1

0

1
2
(θ(ix)− 1)xs dx

x
+

∫ ∞

1

1
2
(θ(ix)− 1)xs dx

x

=
∫ ∞

1

1
2
(θ(−1/ix)− 1)x−s dx

x
+

∫ ∞

1

1
2
(θ(ix)− 1)xs dx

x

=
∫ ∞

1

1
2
(x

1
2 θ(ix)− 1)x−s dx

x
+

∫ ∞

1

1
2
(θ(ix)− 1)xs dx

x

=
∫ ∞

1

1
2
(θ(ix)− 1)(x

1
2−s + xs)

dx

x
+

∫ ∞

1

1
2
(−x

1
2−s − x−s)

dx

x

= − 1
2( 1

2 − s)
− 1

2s
+

∫ ∞

1

1
2
(θ(ix)− 1)(x

1
2−s + xs)

dx

x
.

Notice that the right hand side is defined and analytic for all of C except for simple poles at s = 0
and s = 1

2 . Thus we have given another analytic continuation of ζ to the complex plane except for s = 1
(the pole at 0 coming from the Γ factor). But more importantly, this formula is clearly symmetric under
the change of variables s → 1

2 − s and our theorem is proved. Making the change of variables back from
2s → s, we see that the completed ζ-function π−s/2Γ(s/2)ζ(s) is symmetric about the line Re(s) = 1/2
and only has poles at s = 0 and s = 1.

This proof is Riemann’s second proof of the analytic continuation and functional equation of the
ζ-function. Week 3’s homework will work through his first proof.

Definition 2.2. Let ξ(s) = 1
2s(s− 1)π−s/2Γ(s/2)ζ(s).

Notice that ξ(s) is holomorphic on the entire complex plane, furthermore, it satisfies the functional
equation ξ(s) = ξ(1 − 2). Often it will be more useful to consider this function than the original
ζ-function.

3 The Zeroes of the Zeta Function

Proposition 3.1. ζ(s) 6= 0 for any Re(s) > 1.

Proof. Since Re(s) > 1 we can use the Euler factorization ζ(s) =
∏

p
1

1−p−s . We need only show that
log ζ(s) is finite. But, log ζ(s) =

∑
p

∑∞
k=1

1
kp−ks, and this last sum is clearly bounded.
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Therefore, by the functional equation, the only zeroes of the ζ function with Re(s) < 0 are those
which come from the poles of the Γ function. Thus outside the strip 0 ≤ Re(s) ≤ 1 the only zeroes of
the ζ-function lie at s = 2, 4, . . . and these are simple zeroes of order 1. These are called the “trivial
zeroes.”

Of the remaining zeroes, Riemann remarked, that it was likely that they all lie on the line Re(s) = 1
2 .

This is the celebrated Riemann Hypothesis, which remains open to this day (with a million dollar bounty
on its head).

4 A Brief Tangent: Möbius Inversion

Definition 4.1. If f and g are functions from the natural numbers to say C, let f?g(n) =
∑

d|n f(d)g(n
d ).

Recall that f(s, a)f(s, b) = f(s, a ? b). Thus ? must be associative and commutative. Furthermore,
since the function 1 is the identity under multiplication, the sequence ε(n) which is 1 if n = 1 and
zero otherwise is the multiplicative identity. One can easily show by hand that a sequence has a ?
inverse exactly when a1 6= 0. In particular the function 1(n) = 1 has a star inverse which we will
call µ. Notice that the property defining µ is that

∑
d|n µ(d) = ε(n). By hand one can compute that

µ(n) = (−1)number of prime factors if n is square free, and µ(n) = 0 otherwise.

Theorem 4.2 (Möbius Inversion). If f(n) =
∑

d|n g(d), then g(n) =
∑

d|n µ(n/d)g(d).

Proof. We are given that g ? 1 = f . Therefore, g ? 1 ?µ = f ?µ. But 1 ?µ = ε the identity, thus g = f ?µ
which is exactly what we are trying to prove.

There are several other versions of Möbius inversion which we will be using.

Corollary 4.3. If f(x) =
∑∞

n=1 g(x/n) then g(x) =
∑∞

n=1 µ(n)f(x/n).

Proof. First plug in the formula for f(x) to see,

∞∑
n=1

µ(n)f(x/n) =
∞∑

n=1

∞∑
m=1

µ(n)g(x/mn).

Now let ` = mn and d = m. Thus,

∞∑
n=1

µ(n)f(x/n) =
∞∑

`=1

∑

d|`
µ(d)g(x/`) =

∞∑

`=1

g(x/`)
∑

d|`
µ(d) = g(x).

5 Riemann’s Argument

Riemann used his analytically continued ζ-function to sketch an argument which would give an actual
formula for π(x) and suggest how to prove the prime number theorem. This argument is highly unrigorous
at points, but it is crucial to understanding the development of the rest of the theory.

Notice that log ζ(s) =
∑

p

∑
n

1
np−ns for Re(s) > 1. Letting J(x) be the number of prime powers

less than x, notice that log ζ(s) =
∫∞
0

x−sdJ(x) again for Re(s) > 1. Now use integration by parts to
get

log ζ(s) = s

∫ ∞

0

J(x)x−s−1dx.

Now this is a Mellin transform, so, assuming some technical results, we should be able to use Melin
inversion. Thus,

J(x) =
1

2πi

∫ σ+i∞

σ−i∞

log ζ(s)
s

xsds.
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This converges when σ > 1.
Thus in order to find a formula for J(x) we need only get a better formula for log ζ(s).
Riemann claimed that ξ(s) = ξ(0)

∏
ρ

(
1− s

ρ

)
, where the product is taken over all roots of the ξ

function (that is, over all nontrivial zeroes of the ζ-function). This product does not converge absolutely,
and we should pair any terms with im(ρ) positive with a corresponding term with negative imaginary
part to get a convergent product. The proof of this product formula basically depends on getting nice
bounds on the growth of the number of zeroes.

Now we notice that,

ζ(s) = 2
1

s(s− 1)
πs/2 1

Γ(s/2)
ξ(s) = 2

1
s(s− 1)

πs/2 1
Γ(s/2)

ξ(0)
∏
ρ

(
1− s

ρ

)
.

Therefore,

log ζ(s) = log 2− log s− log(s− 1) +
s

2
log π − log Γ(s/2) + log ξ(0) +

∑
ρ

log
(

1− s

ρ

)
.

We want to substitute this into our integral formula and evaluate termwise, however doing so would
lead to divergent integrals (for example in the s

2 log π term). Thus Riemann first integrated by parts to
get,

J(x) = − 1
2πi

· 1
log x

∫ σ+i∞

σ−i∞

d

ds

(
log ζ(s)

s

)
xsds.

Now we can substitute our formula for ζ(s) and evaluate term by term. With a good bit of work,
Riemann evaluated these integrals and got the formula,

J(x) = Li(x)−
∑

ρ

Li(xρ) +
∫ ∞

x

1
t(t2 − 1) log t

dt− log 2.

Notice that J(x) =
∑∞

n=1
1
nπ(x

1
n ). We can invert this formula to get, π(x) =

∑∞
n=1 µ(n) 1

nJ(x1/n).
This gives us a formula for π(x). Its dominant term is

∑∞
n=1 µ(n) 1

nLi(x1/n). This would show the
prime number theorem if we could actually prove that this term was dominant. The key to proving this
is to show that the

∑
ρ Li(xρ) terms are each smaller, that is to say we need to show that Re(ρ) < 1.
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Lectures # 5 and 6: The Prime Number Theorem.

Noah Snyder

July 8, 2002

1 Riemann’s Argument

Riemann used his analytically continued ζ-function to sketch an argument which would give an actual
formula for π(x) and suggest how to prove the prime number theorem. This argument is highly unrigorous
at points, but it is crucial to understanding the development of the rest of the theory.

Notice that log ζ(s) =
∑

p

∑
n

1
np−ns for Re(s) > 1. Letting J(x) =

∑
pk≤x

1
k , notice that log ζ(s) =∫∞

0
x−sdJ(x) again for Re(s) > 1. Now use integration by parts to get

log ζ(s) = s

∫ ∞

0

J(x)x−s−1dx.

Now this is a Mellin transform, so, assuming some technical results, we should be able to use Melin
inversion. Thus,

J(x) =
1

2πi

∫ σ+i∞

σ−i∞

log ζ(s)
s

xsds.

This converges when σ > 1.
Thus in order to find a formula for J(x) we need only get a better formula for log ζ(s).
Riemann claimed that ξ(s) = ξ(0)

∏
ρ

(
1− s

ρ

)
, where the product is taken over all roots of the ξ

function (that is, over all nontrivial zeroes of the ζ-function). This product does not converge absolutely,
and we should pair any terms with im(ρ) positive with a corresponding term with negative imaginary
part to get a convergent product. The proof of this product formula basically depends on getting nice
bounds on the growth of the number of zeroes.

Now we notice that,

ζ(s) = 2
1

s(s− 1)
πs/2 1

Γ(s/2)
ξ(s) = 2

1
s(s− 1)

πs/2 1
Γ(s/2)

ξ(0)
∏
ρ

(
1− s

ρ

)
.

Therefore,

log ζ(s) = log 2− log s− log(s− 1) +
s

2
log π − log Γ(s/2) + log ξ(0) +

∑
ρ

log
(

1− s

ρ

)
.

We want to substitute this into our integral formula and evaluate termwise, however doing so would
lead to divergent integrals (for example in the s

2 log π term). Thus Riemann first integrated by parts to
get,

J(x) = − 1
2πi

· 1
log x

∫ σ+i∞

σ−i∞

d

ds

(
log ζ(s)

s

)
xsds.

Now we can substitute our formula for ζ(s) and evaluate term by term. With a good bit of work,
Riemann evaluated these integrals and got the formula,

J(x) = Li(x)−
∑

ρ

Li(xρ) +
∫ ∞

x

1
t(t2 − 1) log t

dt− log 2.
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Notice that J(x) =
∑∞

n=1
1
nπ(x

1
n ). We can invert this formula to get, π(x) =

∑∞
n=1 µ(n) 1

nJ(x1/n).
This gives us a formula for π(x). Its dominant term is

∑∞
n=1 µ(n) 1

nLi(x1/n). This would show the
prime number theorem if we could actually prove that this term was dominant. The key to proving this
is to show that the

∑
ρ Li(xρ) terms are each smaller, that is to say we need to show that Re(ρ) < 1.

2 Chebyshev’s Functions

Before Riemann’s work the only significant progress towards the prime number theorem was made by
Chebyshev who proved that, for sufficiently large x and some constants c1 < 1 < c2, c1

x
log x ≤ π(x) ≤

c2
x

log x . To prove this he introduced two functions which are crucial in later proofs of prime number
theory. Recall that we conjecture that the chances that a number n is prime is roughly 1

log n . Thus, if
we counted each prime as log p instead of as 1, then we would get a better behaved function.

Definition 2.1. Let θ(n) =
∑

p≤n log p (where, as usual, at jumps we define the function to be halfway
in between the two values).

As we’ve seen from Riemann’s argument it is often simpler to count prime powers instead of primes.

Definition 2.2. Let ψ(n) =
∑

pk≤n log p.

There is another way of writing ψ in terms of Von Mangoldt’s Λ function.

Definition 2.3. Let

Λ(n) =
{

log n if n is a prime power
0 else .

Clearly ψ(x) =
∑

x≤n Λ(n).
First we notice that one can express each of the functions ψ, θ, π, and J in terms of any of the others.

Proposition 2.4.

J(x) =
∞∑

n=1

1
n

π(x1/n).

π(x) =
∞∑

n=1

µ(n)
1
n

π(x1/n).

ψ(x) =
∞∑

n=1

θ(x1/n).

θ(x) =
∞∑

n=1

µ(n)ψ(x1/n).

Proof. We’ve already shown the first two, and the proof of the second two are exactly the same.

Proposition 2.5.

π(x) =
θ(x)
log x

+
∫ ∞

0

θ(t)
t(log t)2

dt.

J(x) =
ψ(x)
log x

+
∫ ∞

0

ψ(t)
t(log t)2

dt.

ψ(x) = J(x) log x−
∫ x

0

J(t)
t

dt.

θ(x) = π(x) log x−
∫ x

0

π(t)
t

.
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Proof. Notice that π(x) =
∫ x

0
1

log tdθ(t). The theorem follows from integration by parts. Similarly J(x) =∫ x

0
1

log tdψ(t), and we integrate by parts again. Conversely, θ(x) =
∫ x

0
log tdπ(t) and ψ(x) =

∫ x

0
log tdJ(t).

Integrating these by parts gives the second two equations.

Since θ and ψ are trivially O(x log x) and π and J are trivially O(x) we can rewrite these equations
in terms of error estimates. The long and short of all of this is that to prove the prime number theorem
it is enough to prove any of π ∼ Li(x), J(x) ∼ Li(x), θ(x) ∼ x, or ψ(x) ∼ x. Furthermore, given any
explicit error terms in the above approximations we can find explicit error terms for all of the other
approximations. As it turns out ψ is the easiest function to deal with.

Proposition 2.6. For any n,
∑

d|n Λ(d) = log n.

Proof. Notice that n =
∏

p|n pk where k is the largest number such that pk|n. Thus, n =
∏

pk|np.
Taking the logarithm shows that log n =

∑
d|n Λ(d).

There is another way of looking at this identity. In shorthand this proposition claims Λ ? 1 = log n.
Thus it is equivalent to some identity involving Dirichlet series. Notice that

∞∑
n=1

Λ(n)n−s =
∑

p

∞∑
m=1

(log p)p−ms = −ζ ′(s)
ζ(s)

.

Also ∞∑
n=1

log n = ζ ′(s).

Therefore, f(s, Λ)ζ(s) = f(s, log n) exactly as we had hoped to show.

Before leaving this last proof we notice that one of the equations can be rewritten

−ζ ′(s)
ζ(s)

=
∫ ∞

0

x−sdψ(x).

3 Chebyshev’s Theorem

Theorem 3.1. For sufficiently large x and some constants c1 < 1 < c2, c1 ≤ ψ(x)
x ≤ c2.

Proof. Chebyshev noticed that if we sum
∑

d|n Λ(d) = log n over all n ≤ x, then

T (x) =
∑

m≤x

Λ(m)
⌊ x

m

⌋
=

∑

n≤x

log n = logbxc!.

By Stirling’s formula
T (x) = logbxc! = x log x− x + O(log x).

Notice that
T (x) =

∑

m≤x

∑

n≤ x
m

Λ(m) =
∑

n≤x

∑

m≤ x
n

Λ(m) =
∑

n≤x

ψ
(x

n

)
.

Therefore, by Möbius inversion,

ψ(x) =
∞∑

n=1

µ(n)T
(x

n

)
.

This suggests that finite expressions which have several terms from
∑∞

n=1 µ(n)T
(

x
n

)
will give good

approximations to ψ. But we also want good cancellations when we plug in the approximation from
Stirling’s formula. For example, it would be informative to look at expressions of the following form:

T (x)− T
(x

2

)
− T

(x

2

)
,

3



T (x)− T
(x

2

)
− T

(x

3

)
+ T

(x

6

)
,

T (x)− T
(x

2

)
− T

(x

3

)
− T

(x

5

)
+ T

( x

30

)
, etc.

We will look at the first expression T (x) − 2T
(

x
2

)
. Chebyshev looked at the third expression and

was able to get constants c1 and c2 closer to 1. Notice,

T (x)− 2T
(x

2

)
=

∑

m≤x

Λ(m)
(⌊ x

m

⌋
−

⌊ x

2m

⌋)
.

The lefthand side is x log 2 + O(log x). The righthand side is

∑

m≤x

Λ(m)
(⌊ x

m

⌋
−

⌊ x

2m

⌋)
≤

∑

m≤x

Λ(m) = ψ(x).

Therefore, for large x and any constant ε > 0,

log 2− ε ≤ ψ(x)
x

.

In particular, we can take c1 = .69.
Similarly, the righthand side is

∑

m≤x

Λ(m)
(⌊ x

m

⌋
−

⌊ x

2m

⌋)
≥

∑
1
2 x≤m≤x

Λ(m) = ψ(x)− ψ
(x

2

)
.

Therefore, ψ(x)− ψ
(

x
2

) ≤ x log 2 + O(log x). Summing these estimates yields,

ψ(x) ≤ x · 2 log 2 + O(log2 x).

In particular, we can take c2 = 1.38.

By our previous results relating ψ and π, we also get that

.79 · x

log x
≤ π(x) ≤ 1.38 · x

log x
.

4 Reducing the Prime Number Theorem to Facts About ζ(s).

Recall that

−ζ ′(s)
ζ(s)

=
∫ ∞

0

x−sdψ(x).

Integrate by parts to see that

−ζ ′(s)
ζ(s)

= s

∫ ∞

0

ψ(x)x−s−1dx.

Our general method of attack is to rewrite this as a Mellin transform and then use Mellin inversion to
retrieve ψ(x) in terms of ζ(s). However, to make certain integrals behave well later on, we first make a
slight change. Integrates by parts again to notice that

−ζ ′(s)
ζ(s)

= s2

∫ ∞

0

(∫ x

0

ψ(t)
t

dt

)
x−s−1dx.

Definition 4.1. Let φ(x) =
∫ x

0
ψ(t)

t dt.
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Therefore we have

−ζ ′(s)
ζ(s)

= s2

∫ ∞

0

φ(x)x−s−1dx.

To write this as a Mellin transform we make the change of variables s 7→ 1− s. Therefore,

−ζ ′(1− s)
ζ(1− s)

1
(1− s)2

=
∫ ∞

0

φ(x)
x

x−s dx

x
.

In order to apply Mellin inversion we must check to see that the technical conditions of that theorem
are satisfied. Notice that since ψ(x) = O(x log x) we have φ(x)

x = O(log x). Therefore the integrand in
the Mellin transform converges absolutely for <(s) < 0. Also,

∣∣∣∣
ζ ′(s)
ζ(s)

∣∣∣∣ ≤
∞∑

n=1

(log n)n−σ.

Thus, for any positive ε, in the region Re(s) ≥ 1 + ε, the function ζ′(s)
ζ(s) is bounded by an absolute

constant. Therefore, the integral ∫ σ+i∞

σ−i∞

ζ ′(1− s)
ζ(1− s)

1
(1− s)2

dx

converges absolutely for any σ < 0. Therefore the conditions of Mellin inversion are satisfied and,

φ(x)
x

= − 1
2πi

∫ σ+i∞

σ−i∞

ζ ′(1− s)
ζ(1− s)

1
(1− s)2

x−sds,

for any Re(s) < 0.
Now we can change variables back s 7→ 1− s and multiply both sides by x to get,

Proposition 4.2. For any s with Re(s) > 1 the following integral converges absolutely and

φ(x) = − 1
2πi

∫ σ+i∞

σ−i∞

ζ ′(s)
ζ(s)

1
s2

xsdx.

Notice that thus far we could have gone through the argument with ψ(x) instead of φ(x) and the
resulting formula would have a 1/s instead of 1/s2.

Our argument from here on in consists of several parts. First we will assume that there are no zeroes
of the ζ function on the line Re(s) = 1. We will prove this in the next section. Thus the only pole of
the integrand in the halfplane Re(s) ≥ 0 is s = 1. We can subtract off this pole to get a term which
contributes the dominant term x. The remaining integral we can move all the way to the line Re(s) = 1.
Then we will get an explicit bound on this integral. This will give us an approximation for φ(x). Finally
we will need to extract an estimate for ψ(x) from our knowledge concerning ψ(x).

So notice that

φ(x) =
1

2πi

∫ σ+i∞

σ−i∞

1
s− 1

1
s2

xsdx− 1
2πi

∫ σ+i∞

σ−i∞

(
ζ ′(s)
ζ(s)

+
1

s− 1

)
1
s2

xsdx.

The first integral can be written as the limit of an integral about the rectangle with corners 1+1/T±iT
and −T ± iT . The integrals along all but the right side die very quickly. Thus our integral is the sum
of the residues to the left of Re(s) = 2. The only poles are at s = 0 and s = 1. To this end expand
xs = es log x = 1 + s log x + s2 log2 x + . . .. Thus the residue at s = 0 is − log x. At s = 1 the residue is
x. Therefore this integral contributes the term x− log x.

(The notes that I am basing this on say that this integral is x− log x−1. I cannot find out where the
−1 comes from, but I do not trust my ability to do complex analysis very well, and so that is probably
right. Nonetheless since we are only interested in approximation the −1 will not matter.)

Therefore, given our assumption that ζ(1 + it) 6= 0, we have proved:
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Proposition 4.3.

φ(x) = x− log x− x

2πi

∫ i∞

−∞

(
ζ ′(1 + it)
ζ(1 + it)

+
1
it

)
1

(1 + it)2
eit log xdx.

In order to estimate this last integral we will need a few estimates on the size of ζ(s) and ζ ′(s). These
will be proved in the next section. Thus we will make the following assumptions:

Proposition 4.4. Letting s = σ + it as usual, we have the bound ζ(k)(s) = O(logk t) in the region
σ > 1− 1

log t and t > 2. Also we have 1
ζ(s) = O(log7 t) in the region σ ≥ 1 and t > 2.

Proposition 4.5. For any integer k, φ(x) = x + O
(

x
(log x)k

)
.

Proof. Let

f(t) =
1

2πi

(
ζ ′(1 + it)
ζ(1 + it)

+
1
it

)
1

(1 + it)2
.

Recall that φ(x) =
∫
R f(t)eit log x. Since the second term is rapidly oscillating, if we can get a decent

bound on f(t) we should get a very good bound on φ(x). From our estimates concerning ζ and its
derivatives,

f (k)(t) = O

(
log t

(1 + t)2

)
.

Therefore for each k there is a constant C(k) with
∫

R
|f (k)(t)|dt ≤ C(k).

Now we integrate by parts k times to see that,
∫

R
f(t)eit log xdt =

1
(−i log x)k

∫

R
f (k)(t)eit log x.

Therefore, ∣∣∣∣
∫

R
f(t)eit log x

∣∣∣∣ ≤
C(k)
logk x

.

Combining this with our earlier results yields our required results.

Notice that had we attempted to run through the above argument with ψ the final integral would not
have converged absolutely. One would still expect the oscillatory term to cancel things out, but proving
this would be more difficult.

All that remains to do (other than the analytic results put off till next section) is to turn this
estimate for φ into an estimate for ψ. It is perhaps surprising that one can do this, since we are
essentially differentiating an approximation. But since ψ behaves so nicely we can in fact do this.

Theorem 4.6. For any integer k, ψ(x) = x + O( x
logk/2 x

).

Proof. Suppose the ε(x) is any function satisfying 0 < ε(x) ≤ x
2 . Let gk(x) = x

logk x
. We have proved

that for all sufficiently large x and some constant C,

x− Cgk(x) ≤ φ(x) ≤ x− Cgk(x).

Therefore, since gk(2x) ≤ gk(x),

φ(x + ε(x))− φ(x) ≤ ε(x) + Cgk(x + ε(x)) + Cgk(x) ≤ ε(x) + 3Cgk(x).

6



On the other hand, since ψ is an increasing function,

φ(x + ε(x))− φ(x) =
∫ x+ε(x)

x

ψ(t)
t

dt ≥ ψ(x)
ε(x)

x + ε(x)
.

Combining these two equations shows that

ψ(x) ≤ x + ε(x) + 3Cgk(x)
x + ε(x)

ε(x)
≤ x + ε(x) +

6Cxgk(x)
ε(x)

.

Considering φ(x)− φ(x− ε(x)) in the same way yields

φ(x) ≥ x− 2Cxgk(x)
ε(x)

.

Now we can choose ε(x) in such a way to minimize the error term. The best such choice is ε(x) =
c
√

xgk(x) where we choose c small enough so that we still have ε(x) ≤ x
2 . Plugging this expression into

our previous results yields the theorem.

This is equivalent to the prime number theorem. Plugging our estimate for ψ into our previous
relations,

π(x) =
x

log x
+

∫ x

2

1
log2 t

dt + O

(
x

logk x

)
.

However, by integration by parts, Li(x) = x
log x +

∫ x

2
1

log2 t
dt + O(1). Therefore, we have

π(x) = Li(x) + O

(
x

logk x

)
.

Notice that the approximation π(x) = x
log x only holds, a priori, up to O

(
x

log2 x

)
.

5 Some Facts About ζ(s).

Proposition 5.1. For any real t, ζ(1 + it) 6= 0.

Proof. Throughout this proof any time we use the symbol c it means a particular constant which may
change from equation to equation.

Recall that
log ζ(s) ≥

∑
p

p−s + c.

Therefore,

Reζ(s) ≥
∑

p

cos t log p

pσ
+ c.

If s = 1 + it were a zero of the zeta function, then limσ→1+ log ζ(σ + it) = −∞. Therefore,

lim
σ→1+

cos t log p

pσ
= −∞.

This implies that the vast majority of numbers cos t log p are near −1. Therefore, nearly all the numbers
log p would lie near the points of the arithmetic progression (2n + 1)t−1π. This is impossible because
this regularity would suggest that cos(2t log p) were nearly 1 for the vast majority of primes. This in
turn suggests that ζ(s) has a pole at s = 1 + 2it.

Now we make this argument rigorous. Suppose ζ(s) had a zero at s = 1 + it, then ζ(s)/(s− 1− it)
would be analytic near s = 1 + it. In particular, taking the real part of log of ζ(s)/(s− 1 − it), we see
that ∑

p

cos(t log p)
pσ

< log(σ − 1) + c.
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Let δ > 0 be some small positive number. Let S1 be the sum of p−σ over all primes which satisfy
|(2n + 1)π − t log p| < δ for some integer n, and let S2 be the sum over primes which do not satisfy this
condition. For terms in the second sum cos(t log p) > − cos δ. Therefore,

−S1 − (cos δ)S2 < log(σ − 1) + K.

On the other hand, since there is a simple pole at 1, we have S1 + S2 < − log(σ − 1) + c. Therefore,

−S1 − (cos δ)S2 < −S1 − S2 + c.

Therefore,
S2 <

c

1− cos δ
.

However, since 1+2πit is not a pole of ζ(s), the real part of log ζ(s) is bounded above near s = 1+2it.
Therefore ∑

p

cos 2t log p

pσ
< c.

Again we can split this sum up over the two sets of primes. For primes of the first type cos(2t log p) >
cos 2δ > 0. Therefore,

S1 cos 2δ − S2 < c.

Therefore,
S1 <

c

(1− cos δ) cos 2δ
.

Hence, for some constant depending on δ, S1 +S2 < C(δ). Letting σ approach 1 makes the lefthand side
blow up which is a contradiction.

For a more clever but perhaps less informative proof that a zero at ζ(1 + it) would force a pole at
ζ(1 + 2it) look at the proof of this result on one of the next few copied pages.

The proofs of the following two results are on the next few photocopied pages.

Proposition 5.2. Letting s = σ + it as usual, we have the bound ζ(k)(s) = O(logk t) in the region
σ > 1− 1

log t and t > 2.

Proposition 5.3. Letting s = σ + it as usual, we have the bound 1
ζ(s) = O(log7 t) in the region σ ≥ 1

and t > 2.
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Lectures # 7: The Class Number Formula For Positive Definite

Binary Quadratic Forms.

Noah Snyder

July 17, 2002

1 Definitions

Definition 1.1. A binary quadratic form (BQF) is a function Q(x, y) = ax2+bxy+cy2 (with a, b, c ∈ Z)
and will be denoted (a, b, c).

These BQFs were first studied in an attempt to generalize Fermat’s theorem that n = x2 + y2 if and
only if when we write n =

∏
pap the exponent ap is even for every prime p ≡ 1 (mod 4).

Definition 1.2. We say that a BQF Q represents a number n when there exist integers x and y such
that Q(x, y) = n. If x and y are relatively prime then we say that Q properly represents n.

Notice that if d = gcd(x, y) then Q(x, y) = n if and only if Q(x
d , y

d ) = n2

d . Since the latter represen-
tation is proper, to find all numbers represented by Q it is enough to find all the numbers it properly
represents.

The basic question in the theory of BQF’s is to find all numbers represented by a form Q and to find
how many different ways there are to represent each of these numbers.

Definition 1.3. If Q = (a, b, c) is a BQF, we define the associated matrix (which by abuse of notation
we will denote Q) to be (

a b
2

b
2 c

)
.

Proposition 1.4. Let v =
(

x
y

)
. Then

Q(x, y) = vT Qv.

Proof. This simply says that ax2 + bxy + cy2 = ax2 + b
2xy + b

2yx + cy2.

Notice that this means if we change variables
(

x′

y′

)
= v′ = Av (the entries of A are integers) then

Q(x′, y′) = (Av)T QAv = vT (AT QA)v. Therefore, if Q represents a number then so does AT QA. In
particular, if A has an inverse with integer entries, then we get that Q and AT QA represent all the
same numbers. Clearly if A has an inverse B with integer entries, then det A detB = det AB = 1,
thus det A = ±1. Furthermore one can easily show that if det A = ±1 then A has an integer inverse.
Lagrange defined two forms Q and Q′ to be equivalent if there exists A with determinant ±1 such that
AT QA = Q′. Gauss strengthened this notion as follows.

Definition 1.5. We say that two forms Q and Q′ are properly equivalent if there exists a matrix A such
that AT QA = Q′ and det A = 1. If there exists a matrix A such that AT QA = Q′ and detA = −1 then
we call the two BQFs improperly equivalent. Unless otherwise noted, when we say equivalent we mean
properly equivalent.

1



Notice that two BQFs can be both properly and improperly equivalent, for example (1, 0, 1) is

equivalent to itself under the identity transformation and under the transformation
(

1 0
0 −1

)
, thus it

is improperly equivalent to itself.
Furthermore notice that proper equivalence is an equivalence relation (while improper equivalence is

not).
Notice that if two forms Q and Q′ are equivalent, then det Q′ = det AT detQdet A = det Q. This

suggests the following definition.

Definition 1.6. The discriminant of a form Q is the integer DQ = −4 det Q = b2 − 4ac.

We have already proved that the discriminant is defined up to equivalence.
Notice that DQ ≡ b2 ≡ 0 or 1 (mod 4). Furthermore, if DQ is a perfect square then Q factors as the

product of two linear forms. Since the theory is trivial in this case we only consider forms Q with DQ

nonsquare.
Henceforth the number D will always denote a non-square integer congruent to 0 or 1 modulo 4.

Proposition 1.7. Let D = DQ for some fixed form Q. If D > 0 then Q represents both positive and
negative numbers. If d < 0 and a > 0 then Q represents only nonnegative numbers. If d < 0 and a < 0
then Q represents only nonpositive numbers.

Proof. If D > 0 then F (1, 0) = a and F (b,−2a) = −Da. These two numbers have opposite signs. If
D < 0 notice that 4aQ(x, y) = (2ax + by)2 − dy2 ≥ 0, from which the result follows.

Definition 1.8. If DQ > 0 then we call Q indefinite. If d < 0 and a > 0 then Q is called positive
definite. If d < 0 and a < 0 then Q is called negative definite.

Since positive and negative definite forms are simply negatives of each other, we can ignore negative
definite forms. In this week’s lectures we will only be considering positive definite forms, indefinite forms
will be dealt with in one of the projects. Many of the following results also hold for indefinite forms,
finding which ones will be left as an exercise to the reader.

Finally we call a BQF primitive if a, b, and c are relatively prime. Again, if they weren’t we could
factor out the common factor and study that quadratic form and recover all the information about the
original form. Thus from now on we will only consider

2 Class Number

Suppose we consider one particular equivalence class of BQFs. We would like to be able to pick a
particularly nice representative of this class with small coefficients.

Theorem 2.1. Every class contains a form for which |b| ≤ |a| ≤ c.

Proof. Choose a form (a0, b0, c0) belonging to the class in question. Let a be a nonzero number repre-
sented by (a0, b0, c0) with minimal absolute value. Thus

a = a0r
2 + b0rt + cot

2.

We must have gcd(r, t) = 1 or else a
gcd(r,t) would be represented contradicting minimality. Therefore we

can find numbers u and t such that ru− st = 1.

A simple computation shows that
(

r s
t u

)
takes (a0, b0, c0) to (a, b′, c′) for some integers b′ and c′.

Now the transformation
(

1 h
0 1

)
takes (a, b′, c′) to (a, 2ah + b′, c(h)). Thus for suitably chosen

h, the second coefficient can be made smaller in absolute value than b. Therefore, we have found an
element of the class (a, b, c) with |b| ≤ |a|. Since c 6= 0 can be represented by Q we get |a| ≤ |c| as we
had hoped to show.
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Therefore the number of distinct primary equivalence classes with a given discriminant is finite. This
number is called the class number and will be denoted h(D).

If D =≡ 0 (mod 4) then (D, 0, 1) has discriminant D and if D ≡ 1 (mod 4) then (1, 1, 1−D
4 ) has

discriminant D. Thus for any D, h(D) > 0.
Letting χ(n) =

(
D
n

)
Our goal is to give a formula for h(D) in terms of L(1, chi). As a consequence

we will see that L(1, χ) 6= 0.

3 Which Numbers are Represented by Some Form With Dis-
criminant D.

Theorem 3.1. The numbers properly represented by Q are exactly the numbers a′ which appear as the
first term of forms equivalent to Q.

Proof. If Q = (a, b, c) ∼ (a′, b′, c′) via the matrix A =
(

r s
t u

)
, then n = Q(r, t). Since det A = 1, this

representation is proper.
In our proof of the finiteness of class number we should that if a number a′ was properly represented

by Q then Q is equivalent to (a′, b′, c′) for some b′ and c′.

Theorem 3.2. If n is properly representable by Q = (a, b, c) with discriminant D, then D ≡ ¤
(mod 4|n|).
Proof. By the last theorem there exist some b′ and c′ such that (a, b, c) ∼ (n, b′, c′). Thus b′2−4nc′ = D.
The theorem follows.

Theorem 3.3. If D ≡ ¤ (mod 4|n|), then n is properly by some form of discriminant D.

Proof. By assumption there exists some integers ` and k such that `2 = D − 4nk. Therefore the form
(n, `, k) has discriminant D and represents n.

Furthermore, for each choice of `2 ≡ D (mod 4n) with 0 ≤ ` < 2k, there is only one form written in
the form (n, `, k) with discriminant D.

4 An Application

Theorem 4.1. An odd prime p can be written in the form x2 + y2 exactly when p ≡ 1 (mod 4).

Proof. Let Q = (1, 0, 1). This has discriminant −4. Suppose (a, b, c) is a reduced representative of some
equivalence class with discriminant D. Thus |b| ≤ a ≤ |c| and b2−4ac = −4. Thus b2 = 4(ac−1). Since
|ac| ≥ b2 we must have ac − 1 = 0. Thus the only such form is (1, 0, 1). Therefore, h(−4) = 1. Hence
p is representable by (1, 0, 1) if and only if −4 ≡ ¤ (mod 4p). Thus if and only if

(
−1
p

)
= 1. By the

supplementary law to QR we’re done.

Similarly one can show that p = x2 + 2y2 exactly when p ≡ 1 or 3 (mod 8).

5 Number of Representations

We want to find the number of ways in which we can properly represent n by some BQF of fixed
discriminant D < 0. By arguments we have already made it suffices to find every transformation

A =
(

r s
t u

)
with det A = 1 sending Q to itself. For this to happen we must have

a = ar2 + brt + ct2,

b = 2ars + b(1 + 2st) + 2ctu.
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Therefore we must also have, 0 = ars + bst + ctu.
We can eliminate b to get, as = cst2 − crtu = −ct. On the other hand we can eliminate c to get,

a(u− r) = bt. Therefore, a|ct and a|bt. If Q is primitive, then a|t. Let t = at′. Therefore, s = −ct′ and
u− r = bt′. Hence it follows that,

(u + r)2 = (u− r)2 + 4ur = b2t′2 + 4(1 + st) = b2t′2 + 4(1− act′2) = Dt′2 + 4.

Therefore, (u+ r)2−Dt′2 = 4. If D = −3 then there are 6 solutions. If D = −4 there are 4 solutions.
If D < −4 then there are only 2 solutions. We let w denote this number of solutions.

Theorem 5.1. Suppose n is an integer relatively prime to D. If n is divisible by µ distinct primes
each of which has

(
D
p

)
= 1 but by no other primes, then n can be represented in w2µ distinct ways by a

primitive form of discriminant D. Otherwise n cannot be represented by a primitive form of discriminant
D.

Proof. Recall that each pair of solutions of `2 ≡ D (mod 4n) gives us exactly w ways of representing n
by some form of discriminant K. We factor 4n as a product of primes and use the Chinese remainder
theorem to reduce to counting the number of square roots of D modulo a prime power pk.

For each odd prime we can write D as a square modulo pk in exactly 1 +
(

D
p

)
ways.

Now we turn our attention to the prime 2. Suppose n is odd. Then the power of two we are looking
at is 4. Since D ≡ 0 or 1 (mod 4) it can be written as a square in exactly 2 ways. If n is even then we
are looking modulo at least 8. Since n is relatively prime to D, D ≡ 1 (mod 4). Thus D can be written
as a square in 2(1 +

(
D
2

)
) ways.

By only counting one solution from each pair, for the last two cases we should only consider half the
solutions. Thus, for each prime with

(
D
p

)
= 1 we pick up 2 solutions, and modulo the product we end

up with 2µ pairs of solutions. Thus the total number of representations is w2µ.

It follows that:

Theorem 5.2. We have ∑

Q

∑
x,y

Q(x, y)−s = w

∞∑
m=1

2µ

ms
,

where Q runs over each primary class once and x and y run over all relatively prime pairs with Q(x, y)
relatively prime to D.

The right hand side has an Euler factorization.
∞∑

m=1

2µ

ms
=

∏

p: (D
p )=1

1 +
2
ps

+
2

p2s
+ . . . =

∏

p: gcd(p,D)=1 and (D
p )=1

1 + p−s

1− p−s
.

Therefore, ∑

Q

∑
x,y

Q(x, y)−s = w
∏

gcd(p,D)=1

1 + p−s

1−
(

D
p

)
p−s

= w
L(s, χ0)L(s, χ

L(2s, χ0)
.

If we multiply both sides by L(2s, χ0), the left hand side becomes
∑

n

∑

x,yrelatively prime

(n2Q(x, y))−s =
∑

n

∑

x,yrelatively prime

Q(nx, ny)−s =
∑

x′,y′
Q(x′, y′),

where each of these sums range over all pairs with Q relatively prime to D and where the last sum ranges
over all such pairs.

Therefore, (still summing over Q(x, y) relatively prime to D),
∑

Q

∑
x,y

Q(x, y)−s = wL(s, χ0)L(s, χ).
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Dirichlet noticed that if you multiply both sides by (s−1) and send s → 1+ then you get well-defined
limit. The righthand side is wϕ(|D|)

|D| L(1, χ).

Proposition 5.3. Suppose an is a sequence. Let f(x) =
∑

n≤x such that

lim
x→∞

f(x)
x

→ c.

Then

lim
s→1+

(s− 1)
∞∑

n=1

an

ns
= c.

Proof. This proposition states that if some sequence has a well-defined density, then it also has a well-
defined Dirichlet density and the two are equal. The converse, however, is not true.

If f(n− 1) < i ≤ f(n) then let ki = n. Notice that the multiset of all the k′s contains the element n
exactly an times. Thus

∞∑
n=1

an

ns
=

∞∑

i=1

k−s
i .

Let hn = n
kn

. We claim limn→∞ hn = c. Notice that hf(n) = f(n)
n . Thus the smallest that hx can get is

f(n)
n−1 . This limit still approaches c.

Notice,

lim
s→1+

(s− 1)
∞∑

n=1

an

ns
= lim

s→1+
(s− 1)

∞∑
n=1

hs
n

ns
.

The righthand side can be easily evaluated. For any ε > 0 we can choose N large enough such that for
all n ≥ N , c − ε < hn < c + ε. With this choice, splitting the sum up into terms less than and greater
than N ,

lim
s→1+

(s− 1)(c− ε)sζ(s) ≤ lim
s→1+

(s− 1)
∞∑

n=1

hs
n

ns
≤ lim

s→1+
(s− 1)(c + ε)sζ(s).

Thus the limit is sandwiched between c− ε and c + ε and so goes to c.

Proposition 5.4. One can find Q in a given equivalence class such that a is relatively prime to a given
number m.

Proof. This is equivalent to saying that we can choose x and y so that Q(x, y) is relatively prime m.
Choose any prime p|m. If p|a and p|c, then p - b, so if we choose x and y both prime to p Q will also
be prime to p. If p - a (resp. c) then we can choose x prime to p and y divisible by p (resp. x divisible
by p and y prime to p). By the Chinese remainder theorem we can choose x and y subject to the above
conditions for every prime p|m.

Theorem 5.5. For any fixed Q, (taking the sum over Q(x, y) relatively prime to D as usual)

lim
s→1+

s
∑
x,y

Q(x, y)−s =
ϕ(|D|)
|D|

2π√
|D| .

Proof. By our first lemma it is enough to compute the ordinary density limn→∞
f(n)

n where f(n) is the
number of values Q(x, y) ≤ n relatively prime to D.

First we deal with the issue of finding which pairs make Q(x, y) relatively prime to D. Notice that
this is just a question of what the values of Q are on Z/DZ. By our second lemma we can choose our
representative Q such that each one has a relatively prime to D.

Suppose D is odd and thus b is odd. Thus ax2 + bxy + cy2 is relatively prime to D exactly when
2a(ax2 + bxy + cy2) = (2ax + by)2−Dy2 is. Now, no matter what we choose for y we only need to have
(2ax+ by) relatively prime to D. As x varies this runs through a complete residue system, thus the total
number of solutions is Dϕ(D).
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Suppose D is even and thus b is even. Thus ax2 + bxy + cy2 is relatively prime to D exactly when
a(ax2 + bxy + cy2) = (ax + b

2y)2 − D
4 y2 is. If y is even then it is sufficient to choose ax + b

2y relatively
prime to D. This runs through a complete system of residues as x runs through one, thus with y even
there are D

2 ϕ(D) solutions. If y is odd, and D
4 is even, then we are in exactly the same situation and

there are D
2 ϕ(D) more solutions. If y is odd and D

4 is odd then we need to choose ax + b
2y even and

relatively prime to D
4 . Since this expression still runs through a complete residue system modulo D there

are D
2 2ϕ

(
D
4

)
= D

2 ϕ(D). For both of these cases the total number of pairs which give Q(x, y) relatively
prime to D is Dϕ(D).

Thus if we let fx0,y0(n) denote the number of values Q(x, y) ≤ x in some particular equivalence class
(x, y) ≡ (x0, y0) (mod D), it is sufficient to prove

lim
n→∞

f(n)
n

=
1
|D|2

2π√
|D| .

The condition Q(x, y) ≤ n says that (x, y) should lie in an ellipse which expands uniformly as n increases.
We would thus expect the number of points in some particular equivalence class to be 1

|D|2 Area. The

are of the ellipse is 2π√
|D|n. Thus we would expect f(n)

n ≈ 1
|D|2

2π√
|D| .

To make this argument rigorous, divide the plane into squares of side |D|. For every square in the
interior of the ellipse Q(x, y) ≤ n we should count it once. For squares on the boundary we may or may
not count the square depending on whether the lattice point in our equivalence class lies there. Scaling
the whole picture by 1

n we are looking at the plane divided into squares of side |D|
n and we want to

find the number of squares contained in (and possibly on the boundary) of the ellipse Q(x, y) ≤ 1. By
integral calculus, this limit is the area of the ellipse Q(x, y) ≤ 1 regardless of whether we count boundary
points. Therefore limn→∞

f(n)
n = 1

|D|2
2π√
|D| .

Thus we’ve proved our result.

Theorem 5.6.
L(1, χ) = h(D)

2π

w
√
|D| 6= 0

and

h(D) =
w

√
|D|

2π
L(1, χ).

Proof. We have shown that (letting Q run over representatives of each class and x and y range over
pairs with Q(x, y) prime to D)

∑

Q

∑
x,y

Q(x, y)−s = wL(s, χ0)L(s, χ).

Multiply both sides by (s− 1) and send s → 1+. We have already evaluated these limits, thus

h(D)
ϕ|D|
|D|

2π√
|D| =

wϕ(|D|)
|D| L(1, χ).

Rearranging gives our two formulas.

Notice, by the methods of homework 2 we can write L(1, χ) as a finite sum:

L(1, χ) = − π√
|D|

|D|∑
m=1

mχ(m) = − π√
|D|

D

2− χ(2)

|D|
2∑

m=1

χ(m).

Therefore,

h(D) =
1

2− χ(2)

|D|
2∑

m=1

χ(D).
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Notice that since h(D) is positive, most of the squares modulo D lie between 0 and |D|
2 . Interestingly

enough there is no known non-analytic proof of this fact.
This also gives a very quick way of finding a give class number. Unfortunately, the method of simply

finding all reduced forms actually works more quickly. Using the functional equation of the L-series,
however gives a much more efficient way of computing this value.

Finally we would like to notice that if D is squarefree (except for possibly 4) every form is primary
and we could have found a formula for the number of representations of n even when n was not relatively
prime to D. In this case D is a square modulo p in one way but not a square p2 for every prime dividing
n and D (unless that prime is 2 in which case it takes a tad more work). Thus we get representations
when the number is also a product of primes dividing D each taken to the first power. Plugging this
into our equations gives the nicer formula (where we now only sum over x and y not both zero)

∑
x,y

Q(x, y)−s = ζ(s)L(s, χ).
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Lecture # 8 and 9: Ideals and the Class Number Formula.

Noah Snyder

July 22, 2002

1 Another Solution to the n = x2 + y2 Question

There’s a different way to go about the problem of finding all ways of writing n = x2 + y2. Recall that
in the Gaussian integers Z[i] we have an automorphism α 7→ ᾱ. Thus the function Nα = αᾱ = x2 + y2

is multiplicative. Thus our question is just to find all ways of writing n as a norm from the Gaussian
integers. To answer this question we need to know a little about the structure of Z[i].

(Note that by inducting on the norm every number factors into a product of primes.)

Proposition 1.1. Z[i] is a Euclidean domain, therefore it is a PID, and a UFD.

Proof. Take any Gaussian integers α = α1 + α2i and β = β1 + β2i. By the division algorithm in the
integers one can choose q, r′ ∈ Z[i] such that β̄α = Nβq + r′ with r′1 ≤ 1

2Nβ and r′2 ≤ 1
2Nβ. Thus,

Nr′ ≤ 1
2Nβ2. Since r′ = β̄α−Nβq we can write r′ = β̄r. Thus we can write α = βq+r with Nr ≤ 1

2Nβ.
Thus Z[i] is Euclidean. By standard arguments it must also be a PID and a UFD.

Thus if we factor n into a product of primes in Z[i] we only need to check whether each prime also
pairs with one of its conjugates. To do this we need to get some handle on what the primes in Z[i] are
like.

Proposition 1.2. Any prime π ∈ Z[i] divides exactly one prime p ∈ Z.

Proof. ππ̄ = Nπ =
∏

i pai
i . Thus, by unique factorization, we must have π|pi for some i. Suppose

π|p and π|q for two distinct primes. Then choose x and y so that px + qy = 1. Thus π|1 which is a
contradiction.

Thus in order to find all the primes in Z[i] it is enough to find how each prime in Z factors in Z[i].

Proposition 1.3. If p is a prime in Z it factors into primes in Z[i] as follows:

p =





p if p ≡ 3 (mod 4)
ππ̄ (with π 6= uπ̄) if p ≡ 3 (mod 4)
ππ̄ (with π = uπ̄) if p ≡ 2 (mod 4)

Proof. Notice that
Z[i]/p = Z[x]/(x2 + 1, p) = Z/p[x]/(x2 + 1).

If we know how p factors in Z[i] then we know the structure of Z[i]/p (that is, field, product of two fields,
or ring with nilpotent elements). Similarly if we know how (x2 + 1) factors in Z/p[x] we can recover the
structure of Z/p[x]/(x2 +1). Therefore we must have that Z[i]/p must factor in Z[i] exactly how (x2 +1)
factors in Z/p[x]. By the quadratic formula the latter is given by whether −4 is a square modulo p. The
result follows.

Notice that this gives a way of finding which n can be written as x2 + y2 and how many ways we can
write it this way. If we factor n into primes in Z then each prime which is 1 modulo p can be written
as the norm of π and π̄. Each prime which is 3 modulo 4 must appear with its conjugate (itself) and so
the exponent must be even and still you can only write it as a norm one way. The prime 2 can appear
to any power, but it can only be written as a norm one way. Since there are exactly 4 units (its easy
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to see that α is a unit iff Nα = 1), its easy to see that n can be written as a norm iff it every prime 3
mod 4 appears to an even power and it can be written in 4 · 2x where x is the number of primes 1 mod
4 dividing n.

Definition 1.4.
ζZ[i](s) =

∑

α∈Z[i] {0}
Nα−s.

Since the norm is multiplicative and the Gaussian integers have unique factorization there is an Euler
factorization for this ζ function.

ζZ[i](s) = 4
∏
π

1
1−Nπ−s

where π ranges over the Gaussian primes, but we only count each set of associates (π, −π, iπ, and −iπ)
once. By our result classifying the primes in Z[i],

ζZ[i](s) = 4
∏

p≡1 (mod 4)

(
1

1− p−s

)2 ∏

p≡2 (mod 4)

1
1− p−s

∏

p≡3 (mod 4)

1
1− p−2s

= 4
∏
p

1
1− p−s

∏
p

1

1 +
(
−4
p

)
p−s

= 4ζ(s)L
(

1,

(−4
·

))
.

Since the lefthand side is a generating function for the number of solutions to n = x2 + y2 this
equation encodes a formula for the number of solutions to n = x2 + y2.

Further notice that this formula is exactly the formula which we used to get the class number formula.

2 Factorization in Z[
√

d].

We would like to go through the same argument for Z[
√

d]. To do so we need unique factorization. But,
for example

2 · 2 = (1 +
√−3)(1−√−3).

Notice that if one tried to prove the division algorithm here you would get a problem exactly when
you had a remainder which looked like ( 1

2 + 1
2

√−3)β. This suggests that one instead look at Z[ 12 +
√−3

2 ].

Notice that numbers of the form a + b
(

1
2 +

√−3
2

)
are in fact closed under multiplication and addition,

and one can easily show that this domain is euclidian. Furthermore, the norm of these elements is always
an integer and so we can use induction.

So suppose we’re given a ring Z[
√

d] how many extra rational points of Q[
√

d] can we throw in while
staying closed under multiplication and having integral norms? It is easy to see that we must then have
α + ᾱ ∈ Z and Nα ∈ Z. Combining these two conditions means that the biggest such ring we can find
is,

O√d =

{
Z[
√

d] if d 6≡ 1 (mod 4)
Z[ 12 +

√
d

2 ] if d ≡ 1 (mod 4)
.

Notice that in these two cases the generator of this ring has minimal polynomials x2 − d and x2 +
x + 1−d

4 . Furthermore, the former of these two has discriminant 4d while the latter has discriminant d.
However, even with these added points one still does not get unique factorization. For example we

have the following non-unique factorization:

2 · 3 = (1 +
√−5)(1−√−5).

Kummer wanted to fix this problem by adding in additional symbols called “ideal primes” to restore
unique factorization. Thus we would have, 2 · 3 = p1p2p3p4 = (1 +

√−5)(1 − √−5) and thus no

2



contradiction to unique factorization. Now when do we need such factors? If α is irreducible by O√d/α
is not a field then we need some ideal prime factor of α. Thus these “ideal primes” correspond to maps
O√d → Fq and we say that p|α if this map factors through O√d/α.

Dedekind realized that its much nicer to look at the kernels of these maps which are called ideals.

3 Ideals in Quadratic Number Fields

Unless otherwise noted we are always looking at the ring O√d. Most of these results are not true for a
general domain.

Proposition 3.1. Any ideal in O√d can be written as αZ+ βZ.

Proof. Any ideal is a sublattice of the ring of integers, and any two-dimensional lattice can be written
in this form.

If A and B are ideals in O√d let Ā = {ᾱ : α ∈ A}. Let AB = {∑k
i=1 αiβi : k ∈ Z+, αi ∈ A, βi ∈ B}.

Let (A,B) = {α + β : α ∈ A, β ∈ B}. Notice that all of these are ideals.

Proposition 3.2. NA = nO for some rational integer n.

Proof. Notice that for some α and β in O we have A = (α, β). Thus NA = (αᾱ, αb̄eta, βᾱ, ββ̄). We
want to find some rational integer n ∈ NA such that αᾱ

n , αb̄eta
n , βᾱ

n , ββ̄
n are all in O. That is to say

we need the traces and norms of all of those numbers to be in Z. Thus we only need n|αᾱ, n|ββ̄ and
n|(αb̄eta + βᾱ). Thus we let n = gcd(αᾱ, ββ̄, αb̄eta + βᾱ) this is clearly in A and we’ve shown that
A ⊇ nO, thus A = nO.

Proposition 3.3. In O√d, AB = AC then B = C.

Proof. If AB = AC, then nB = ĀAB = ĀAC = nC for some integer n. But then one can easily see
that every element of B is an element of C and vice versa.

Proposition 3.4. In O√d, A|B iff A ⊇ B.

Proof. The forward direction is true in any domain. If AC = B then choose any β ∈ B. By definition
β =

∑
i αiγi for some αi ∈ A and γi ∈ C. But γi ∈ O, therefore β ∈ B.

Now we prove the backwards direction. First assume that A = αO is principal. So we’re assuming
that αO ⊇ B. Therefore, for all β ∈ B, β = αγ for some γ ∈ O. Let C = {γ : αγ ∈ B}. C is an ideal
and B = αC, so A|B.

Now suppose A is any ideal. A ⊇ B, so nO = ĀA ⊇ ĀB. Thus for some ideal C, nC = ĀB.
Therefore, ĀAC = nC = ĀB, so by our last lemma AC = B.

Definition 3.5. A 6= O is called irreducible if A = BC implies B = O or C = O. P 6= O is called
prime if P |AB implies P |A or P |B.

Obviously any ideal factors as a product of irreducible ideals. On the other hand any factorization
into prime ideals is clearly unique. Thus we need only show that these two concepts coincide in O√d.

Proposition 3.6. An ideal P is prime iff αβ ∈ P implies α ∈ P or β ∈ P .

Proof. If αβ is in P , then by our lemma P |(α)(β). Therefore by the definition of prime P |(α) or P |(β).
Using the lemma again α ∈ P or β ∈ P .

On the other hand suppose P satisfies the condition αβ ∈ P implies α ∈ P or β ∈ P and P |AB.
Further suppose P - A and P - B. Thus P + A and P + B. Hence there exist α ∈ A and β ∈ B such
that α 6∈ P and β 6∈ P . Hence αβ 6∈ P . This is a contradiction.

This definition is the usual definition of a prime ideal. Further note that this means that P is prime
if and only if O/P is a domain.
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Proposition 3.7. An ideal A is irreducible if and only if it is maximal (that is not properly contained
in any ideal other than O).

Proof. Again we just use the lemma. Irreducible says that A is maximal with respect to the divides
partial ordering. But since divides is the same as contains this is equivalent to saying its maximal.

Notice that maximal ideals are characterized by the fact that when you mod out by them you get a
field (the only kind of domain with no nontrivial proper ideals).

Proposition 3.8. An ideal is prime if and only if its irreducible.

Proof. We’ve shown that an ideal is prime if and only if when you mod out by it you get a domain. We’ve
also seen that an ideal is irreducible if and only if when you mod out by it you get a field. However,
NA ⊆ A and O/Na has Na2 elements, thus O/A has finitely many elements. But any finite domain is
a field.

Thus we have proved:

Theorem 3.9. Ideals in O√d factor uniquely as a product of prime ideals.

4 Class Number Formula

Now we can argue just was we did in Z[i] and a prime p factors in O√d exactly how x2 − d factors in
Z/p[x]. Furthermore, by unique factorization the zeta function attached to this ring will have an Euler
factorization. Thus, if D < 0 is congruent to 0 or 1 modulo 4 and w is the number of units in O√D,

ζO√D
(s) =

∑

A

NA−s =
∏

P

1
1−NP−s

=
∏

(D
p )=1

(
1

1− p−s

)2 ∏

(D
p )=1

1
1− p−s

∏

(D
p )=1

1
1− p−2s

= ζ(s)L
(

s,

(
D

·
))

.

Again the righthand side has a finite limit if you multiply by (s− 1) and then send s to 1. We would
like to evaluate this limit of the lefthand side. However dealing with a sum over all ideals is rather
unruly. We would like to be able to write this in terms of the elements of O√d.

Notice that since ideals factor uniquely as a product of primes, one can consider the group of fractional
ideals, that is to say the free abelian group generated by prime ideals. Furthermore the principal
fractional ideals are a subgroup. Thus we can consider the ideal class group C which is the fractional
ideals modulo the principal fractional ideals.

Thus we can write any ideal as an element of the class group times a principal fractional ideal. This
gets very close to expressing this sum as a sum over elements. In fact,

∑

A

NA−s =
∑

A∈C

1
w

∑

α∈K:αA⊆O
N(αA)−s.

Now αA ⊆ O exactly when αNA ⊆ Ā. Thus we can rewrite this,

ζO√D
(s) =

∑

A∈C

NAs

w

∑

α∈Ā

Nα−s.

By our lemma relating the Dirichlet density to the actual density the limit of that last sum times
(s− 1) is just (assuming this latter quantity exists):

lim
N→∞

∑

A∈C

NAs

w

fA(N)
N

,
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where fA(N) is the number of elements of Ā with norm smaller than N . But Ā is just a lattice whose
fundamental parallelogram has area NA. (This fact is easy to show for primes, a bit more work for prime
powers and then the Chinese remainder theorem gives you the full result.) Furthermore the condition
that Nα ≤ N is that the point lie inside an ellipse with volume 2π√

D
. Thus by exactly the same arguments

as the last section this limit is 2πh(D)

w
√

D
, where h(D) is the size of the class group (which much be finite

for this sum to converge). Therefore, taking this limit of both sides,

2πh(D)
w
√

D
= L(1, χD).

5 The Correspondence Between Forms and Ideals

As we have seen above the class number formula for quadratic forms has an analogue for ideals in
quadratic imaginary fields and the question of how you can write numbers in the form x2 + ny2 can
be answered (sort of) using either theory. Thus we might expect there is a closer correspondence going
on. If one considers an ideal A = {αx + βy} in O√D the norm is going to be some quadratic form.
Furthermore if one has a quadratic form like x2 + y2 these numbers are exactly the image of the norm
from some ideal in some quadratic number field. We make this correspondence explicit as follows.

Definition 5.1. If A is an ideal in O√D with a chosen ordered basis A = αZ+βZ, then let fα,β(x, y) =
1

N(A)N(αx + βy).

Proposition 5.2. fα,β is a primitive BQF.

Proof. Multiplying out the definition of the norm,

fα,β(x, y) =
1

N(A)
N(αᾱx2 + (αβ̄ + ᾱβ)xy + ββ̄y2).

All of these coefficients are fixed under conjugation and thus lie in Z, we need only show that their gcd
is exactly N(A). But this is precisely what we proved when we showed that NA = nO.

Proposition 5.3. The discriminant of fα,β is D.

Proof. The discriminant of fα,β is by definition

1
NA2

(αβ̄ + ᾱβ)2 − 4NαNβ =
1

NA2
(αβ̄ − ᾱβ)2.

This last expression is the determinant of the matrix
(

α β
ᾱ β̄

)
. Since αZ + βZ is a sublattice of

the lattice O, for some matrix M ,
(

α
β

)
= M

(
1

D
2 +

√
D
2

)
.

Therefore,

det
(

α β
ᾱ β̄

)
= det M det

(
D
2 +

√
D
2 1

D
2 −

√
D
2 1

)
.

Furthermore, det M = ±NA because its absolute value is the index [O : A]. Thus,

det
(

α β
ᾱ β̄

)
= ±NA√

D
.

Plugging this into the formula for the discriminant gives our result.
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In order to fix

det
(

α β
ᾱ β̄

)
= +

NA√
D

we notice that by interchanging α and β we switch the sign of the
√

D term. Thus for one choice of
ordering we can require the plus sign here. Such a basis is called oriented.

Proposition 5.4. The image of the map (α, β) 7→ fα,β from oriented bases of ideals is all primitive
(positive definite) quadratic forms with discriminant D.

Proof. Suppose Q = (a, b, c) is some primitive BQF with discriminant D (positive definite if D < 0).
Let A = 2aZ+ (b±√D)Z with the sign chose so that this basis is oriented. We assume for the moment
that A is an ideal. Then

fA(x, y) =
1

NA
N(2ax + (b±

√
Dy)) =

1
NA

(4a2 + 4abxy + 4acy2).

Furthermore, we have already shown NA = gcd(4a2, 4ab, 4ac) = 4|a| since Q is primitive. Therefore,
fA = ±Q and by looking at the sign of a one can easily see fA = Q.

To complete the proof we need to prove that A is an ideal. To do this we need to show that multiplying
each of the basis elements by D+

√
D

2 gives something in A. But

2a
D +

√
D

2
= 2a

D − b

2
+ (b +

√
D)a

and

(b +
√

D)
D +

√
D

2
= 2ac +

b + d

2
(b +

√
D.

Since b and D have the same parity we’re done.

All that remains to show is that this correspondence preserves the equivalence class structure. Notice
that two oriented bases (α, β) and (α′, β′) are equivalent if and only if there exists some matrix M ∈
SL2(Z) and a fractional principal ideal αO such that

αM

(
α
β

)
=

(
α′

β′

)
.

Notice that

(αx + βy) =
(

α
β

)T (
x
y

)
=

(
α′

β′

)T

M−T

(
x
y

)
.

Letting (
x′

y′

)
= M−T

(
x
y

)

we get that fα,β ∼ ±fα′,beta′ under the transformation M−T where the sign comes from the sign of Nα.
Similarly one can go the other way and one gets that the so called strong equivalence of ideals (where
we require that the principal ideal taking one to the other has positive sign) corresponds to proper
equivalence of BQFs.

6 Another Proof of the Nonvanishing of L(1, χ).

Lastly we give a proof of the nonvanishing of L(1, χ) for χ a nontrivial real Dirichlet series without
proving the full class number formula. Notice that the quadratic forms argument showed that there was
a nice Dirichlet series expansion of L(s,χ)L(s,χ0)

L(2s,χ0)
. If in fact L(1, χ) = 0, then the lefthand side would

be zero at s = 1. But the Dirichlet series expansion has only positive terms and its constant term is
nonzero.
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Theorem 6.1. If χ is any nontrivial real Dirichlet character modulo m, L(1, χ) 6= 0.

Proof. Let

F (s) =
L(s, χ)L(s, χ0)

L(2s, χ0)
.

Assume L(1, χ) 6= 0. Thus F (s) is holomorphic for σ > 1
2 . In addition lims→ 1

2
F (s) = 0.

Since χ is real χ(p) = ±1. Therefore,

L(s, χ) =
∏

p:χ(p)=1

1
1− p−s

∏

p:χ(p)=−1

1
1 + p−s

.

Using the Euler factorization for L(s, χ0) we get,

F (s) =
∏

p:χ(p)=1

1− p−2s

(1− p−s)2
∏

p:χ(p)=−1

1− p−2s

(1 + p−s)(1− p−s)
=

∏

p:χ(p)=1

1 + p−s

1− p−s
.

For σ > 1 we can expand this as a Dirichlet series F (s) =
∑

n ann−s where each an is nonnegative
and a1 = 1 (in fact the Dirichlet series is our old friend 2µ). Since F (s) is holomorphic in the region
σ > 1

2 it has a power series about 2 with radius at least 3
2 . That is to say, F (s) =

∑∞
m=0

F (m)(2)
m! (s−2)m.

We can explicitly compute the terms of this power series using our Dirichlet series expansion. That is
to say,

F (m) =
∞∑

n=1

an(log n)mn−2 = (−1)mbm,

where bm ≥ 0 and b0 ≥ a1 = 1. Therefore,

F (s) =
∞∑

m=0

bm

m!
(2− s)m.

Therefore, for real s ∈ ( 1
2 , 2), F (s) ≥ F (2) ≥ b0 ≥ 1, this contradicts the fact that lims→ 1

2
F (s) = 0.
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