
4 Spirals and Seashores

Sir Isaac Newton’s relation to algebra was peculiarly ambiva-
lent. As a young man, he studied Descartes’s works carefully.
In maturity, he so loathed Descartes that he sometimes seems
to have been unwilling to utter or write Descartes’s name, as
if it would defile him. The reasons for this are not totally
clear. Newton despised Descartes’s philosophy as cloaked
atheism, but there were also mathematical reasons for his
displeasure. Newton, like Viète, styled himself a devotee
and restorer of antiquity, whereas Descartes, he felt, had be-
trayed the profundity of Greek geometry for the questionable
advantages of analytic geometry.

To demonstrate his claim, in his Principia Newton offers
a purely geometric resolution of the four-line locus problem
Descartes so prided himself on, noting caustically that this
gives “not an [analytical] computation but a geometrical syn-
thesis, such as the ancients required, of the classical problem
of four lines, which was begun by Euclid and carried on by
Apollonius.” In the rest of the Principia, Newton also tends to
avoid analytical algebra, preferring to state his propositions
in the manner of Euclid. However, this appearance is decep-
tive, for in fact Newton does use algebraic expressions as
well as a new tool of analytical mathematics that he himself



60 Chapter 4

has created: the calculus. Though he phrases it in terms of
geometry, Newton’s calculus goes beyond anything known
to the ancients, even Archimedes, whom Newton considered
his precursor.

Thus, though he tends to prefer geometry, Newton is
steeped in algebra. As a young professor, he lectures on the
topic (during 1672–1683), though his lectures on Universal
Arithmetic are not published until 1707. Newton also makes
a number of discoveries that will bear on the problem of the
quintic. He was able to make simple connections between the
coefficients of an equation and its roots, known as “Newton’s
identities.” These generalize “Girard’s identities”: the coeffi-
cient of the next-lowest degree term (of x4, for a quintic equa-
tion) is equal to the negative sum of all the roots (see box 4.1).
Likewise, all the other coefficients are equal successively to
the sum of all products of the roots taken two at a time, then
three at a time, until the final, constant term is equal to the
negative of the product of all the roots. Later on, it will be-
come extremely important to note that all of the roots appear
in a symmetric manner in each of these products and sums.
That is, every root appears in exactly the same way as ev-
ery other root, so that if one were to exchange two roots, the
product of all of them would be unchanged, as would the
products of them taken two at a time, and so on. The im-
portance of these rules is that they let us see direct relations
between coefficients and roots, without knowing the value
of the roots. Newton is also able to obtain upper and lower
bounds for the roots, that is, to show how large (or small)
they could possibly be. Using these tools, we can look at any
equation and determine the range within which its roots lie,
as well as whether they are negative or positive in value.

Newton’s deepest insight, however, remained hidden for
many years, buried in a passage in his Principia that was
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Box 4.1
Girard’s and Newton’s identities

Consider a cubic equation with the roots x1, x2, x3. The equa-
tion can be written (x − x1)(x − x2)(x − x3) = 0. Multiplying
it out, we get x3 − (x1 + x2 + x3)x2 + (x1x2 + x1x3 + x2x3)x −
x1x2x3 = 0. Note that the coefficient of the x2 term is the
negative sum of all three roots, −(x1 + x2 + x3), while the co-
efficient of the x term is the symmetric product of all the roots,
taken two at a time: (x1x2 + x1x3 + x2x3). Finally, the constant
term of the equation is the negative product of all three roots:
−x1x2x3. We can apply the same reasoning to an equation of
any degree, so that the coefficient of the next-to-highest
power of the unknown must be the negative sum of all the
roots, the next coefficient must be the symmetric sum of all
the roots taken two at a time, and so on. We will refer to
these simple relations as “Girard’s identities,” which Newton
greatly generalized in expressions he derived for the sum of
the square of all the roots, or the sum of their nth powers,
“Newton’s identities.”

not much noticed until the twentieth century. In lemma 28
of Book I, in an investigation of the curved paths that bod-
ies can take (as in the orbits of planets), he shows that “No
oval figure exists whose area, cut off by straight lines at will,
can in general be found by means of equations finite in the
number of their terms and dimensions.” That is, if we draw
lines across an oval, the area between those lines cannot be
expressed by a finite algebraic equation. Though he does not
define the word explicitly, by “oval” Newton seems to mean
any closed curve that does not cross itself (it is “simple,”
in the language of modern mathematicians) and is infinitely
smooth (it always has finite curvature, never is “flat”). The
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simplest such curve is a circle, and it had long been suspected
that the area of a circle is irrational with respect to its radius.
But what Newton surmises goes far beyond the irrationality
of π , the name later given (by Euler) to the value of a circle’s
perimeter divided by its diameter, and beyond the irrational-
ity even of π 2. Newton’s argument indicates that the area of
a circle is not given by any algebraic equation, however high
its degree, and thus that area (and hence π also) cannot be
expressed in terms of any finite number of square roots, cube
roots, fifth roots, and so on.

To use the term that Euler later introduced, the area of a
circle is transcendental, meaning it cannot be expressed as the
root of any equation of finite degree whose coefficients are
rational numbers. At one stroke, Newton indicates that such
magnitudes exist (because circles exist, and have areas), and
also that there are infinitely many of them, since his proof
is not restricted to circles but holds for any “oval” curve. His
proof is a miracle of simplicity and power, for which he does
not even bother to draw a picture or write down a line of
algebra. It follows from a single brilliant contrivance. Inside
the oval, pick any point whatever; let us call it the pole, P .
Now let a straight line come out from that pole and rotate
around it at uniform angular speed. Picture a clock hand
that makes a complete revolution in one hour. Now imagine
a point of light moving along that hand, starting from the
pole and moving outward along the hand with speed given
by the square of the distance from the pole to the point A
where the hand intersects the oval (figure 4.1).

Newton has set up a way of measuring the area of the cir-
cle, for each hour the hand sweeps through that area, and the
moving point keeps track of the area because it is traveling
with speed proportional to the area swept out. Here Newton
is implicitly using his new calculus of motion, for he knows
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Figure 4.1
Newton’s diagram for his lemma 28, which argues that no oval curve has
an area expressible by a finite algebraic equation. From any point P inside
the oval, draw a straight line that rotates about P at uniform angular speed.

A

A′
P

Figure 4.2
Detail of Newton’s lemma 28; the speed of the moving point is proportional
to the area swept out between A and A′.

that, in an infinitesimally short time, the point travels a dis-
tance from the pole equal to the area the hand has swept out
in that time (figure 4.2). However, we don’t need to know
anything about calculus in what follows. All that matters is
that since, second by second, the moving point is registering
the area that the hand sweeps out, we can measure the whole
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area of the oval merely by waiting until an hour has elapsed
and measuring the distance the moving point has traveled
radially outward from the pole. For the two-dimensional
problem of measuring an area, Newton has substituted a one-
dimensional problem that gives the same answer: find the
length traveled outward by the moving point during an hour.

The hand moves around uniformly, but the moving point
speeds up and slows down in the course of each hour, in pro-
portion to the square of the distance from the pole to the oval
at any given moment. Each hour it returns to its initial speed
of an hour before. If you were to watch the lighted point (or
if you were to open the shutter of your camera and make a
long exposure), you would see it move in a spiral, starting
at the pole and making “an infinite number of gyrations,” as
Newton puts it (figure 4.3). Now Newton applies a reductio
ad absurdum: Suppose that it is possible to describe this spi-
ral (and hence also the area of the oval) by some polynomial
equation with a finite number of terms, f (x, y) = 0. Then con-
sider a straight line running across the spiral that we will call
the x-axis, defined by y = 0. What can be said about the inter-
sections of this line and the spiral? Each of them is a root of the
equation f (x, 0) = 0. For instance, Descartes showed that all
the conic sections can be described by equations of the second
degree, and those curves can be cut by a straight line no more
than two times. Now Newton relies on the fact that an equa-
tion of finite degree can have only a finite number of roots,
no matter how large. But the spiral in its “infinite number of
gyrations” crosses the line an infinite number of times. Thus,
there should be an infinite number of intersection points,
corresponding to an infinite number of roots of the equation.
This contradicts our hypothesis that the equation has finite
degree, and hence Newton’s conclusion follows: there is no
such equation that gives the area of the oval.
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Figure 4.3
In Newton’s lemma 28, the track of the moving point forms a spiral, com-
posed of the motion of the point along the line and the uniform rotation of
the line itself about P . Newton determines the area of the curve by com-
paring the distance from the pole P to the point X after one full revolution,
which sweeps out the full area of the oval. The moving point travels an equal
distance XX′ = P X during the next sweep, and so forth.

This brilliant argument indicates that all simple closed
curves, such as the circle or the ellipse, have areas that can-
not be described by finite algebraic equations. The argument
seemed so simple that it made Newton’s contemporaries sus-
picious. Daniel Bernoulli and Leibniz tried to state counterex-
amples, but these each involved a curve that intersects itself
(for example, the lemniscate, a figure-8 on its side, ∞) or that
is not closed (for example, a parabola). Later mathematicians
demanded greater rigor than Newton’s beautifully simple
arguments (how can we prove that the spiral must have
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infinitely many intersections with the line?), but the basic
thrust of his insight was sustained. There are infinitely many
magnitudes that are more irrational than any radical, in the
sense that no finite root is commensurable with them. In this
sense, they are transcendental. Implicitly, Newton considers
that his proof argues the priority of geometry over algebra
by showing that a simple geometric figure includes quanti-
ties that defeat any finite amount of algebra. This makes his
own preference for geometry (and his geometrically phrased
calculus) more persuasive, for he thereby places his master
theory beyond the limitations of algebra. In Newton’s view,
the ancients, with him as their modern champion, have de-
feated the upstart Descartes by subsuming algebra under the
larger umbrella of geometry.

With this in mind, it is understandable that Newton may
not have considered the solution of the quintic to be germane
to his larger project, though in his younger days he did spend
much energy in classifying cubic equations and contributing
to the advance of algebra (for instance, “Newton’s method”
for the approximation of roots). If the real battle concerns
geometric magnitudes not expressible in finite equations,
why worry about the details of quintics? Ironically, succeed-
ing generations of mathematicians would take up Newton’s
work in the simpler algebraic notation devised by his arch
rival, Leibniz. His insights about transcendental magnitudes
would be rediscovered centuries later. We will return to them
later in light of the unfolding story of the quintic.

Despite Newton, the power and beauty of the algebraic
notation ensured that interest in basic questions of algebra
remained high. New hope for the solution of equations
beyond the quartic was offered by the work of a Saxon noble-
man, Count Ehrenfried Walter von Tschirnhaus. Tschirnhaus
had varied interests. He served in the Dutch army and spent


