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1.2. The Finite Calculus

The results in the previous sections are beautiful, but some of the proofs are
almost too clever. In this section we will see some structure that simplifies
things. This will build on skills you already have from studying calculus.

For example, if we want to go beyond triangular numbers and squares, the
next step is pentagonal numbers. But the pictures are hard to draw because of
the fivefold symmetry of the pentagon. Instead, consider what we’ve done so
far:

n: 1 2 3 4 5 . . . ,

tn: 1 3 6 10 15 . . . ,

sn: 1 4 9 16 25 . . . .

In each row, consider the differences between consecutive terms:

(n + 1) − n: 1 1 1 1 1 . . . ,

tn+1 − tn: 2 3 4 5 6 . . . ,

sn+1 − sn: 3 5 7 9 11 . . . .

There is nothing new here; in the third row, we are just seeing that each square
is formed by adding an odd number (gnomon) to the previous square. If we
now compute the differences again, we see

0 0 0 0 0 . . . ,

1 1 1 1 1 . . . ,

2 2 2 2 2 . . . .

In each case, the second differences are constant, and the constant increases
by one in each row.

For convenience we will introduce the difference operator, �, on func-
tions f (n), which gives a new function, � f (n), defined as f (n + 1) − f (n).
This is an analog of derivative. We can do it again,

�2 f (n) = �(� f )(n)

= (� f )(n + 1) − (� f )(n)

= f (n + 2) − 2 f (n + 1) + f (n),

in an analogy with the second derivative. Think of the triangular numbers and
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square numbers as functions and not sequences. So,

s(n) = n2,

�s(n) = (n + 1)2 − n2

= n2 + 2n + 1 − n2 = 2n + 1,

�2s(n) = (2(n + 1) + 1) − (2n + 1) = 2.

Based on the pattern of second differences, we expect that the pentagonal
numbers, p(n), should satisfy �2 p(n) = 3 for all n. This means that �p(n) =
3n + C for some constant C , since

�(3n + C) = (3(n + 1) + C) − (3n + C) = 3.

What about p(n) itself? To correspond to the +C term, we need a term,
Cn + D for some other constant D, since

�(Cn + D) = (C(n + 1) + D) − (Cn + D) = C.

We also need a term whose difference is 3n. We already observed that for the
triangular numbers, �t(n) = n + 1. So, �t(n − 1) = n and �(3t(n − 1)) =
3n. So,

p(n) = 3t(n − 1) + Cn + D = 3(n − 1)n/2 + Cn + D

for some constantsC and D. We expect p(1) = 1 and p(2) = 5, because they
are pentagonal numbers; so, plugging in, we get

0 + C + D = 1,

3 + 2C + D = 5.

Solving, we get that C = 1 and D = 0, so

p(n) = 3(n − 1)n/2 + n = n(3n − 1)/2.

This seems to be correct, since it gives

p(n) : 1 5 12 22 35 . . . ,

�p(n) : 4 7 10 13 16 . . . ,

�2 p(n) : 3 3 3 3 3 . . . .

Exercise 1.2.1. Imitate this argument to get a formula for the hexagonal
numbers, h(n).
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The difference operator, �, has many similarities to the derivative d/dx
in calculus. We have already used the fact that

�( f + g)(n) = � f (n) + �g(n) and �(c · f )(n) = c · � f (n)

in an analogy with the corresponding rules for derivatives. But the rules are
not exactly the same, since

d

dx
x2 = 2x but �n2 = 2n + 1, not 2n.

What functions play the role of powers xm? It turns out to be the factorial
powers

nm = n(n − 1)(n − 2) · · · (n − (m − 1))︸ ︷︷ ︸
m consecutive integers

.

An empty product is 1 by convention, so

n0 = 1, n1 = n, n2 = n(n − 1), n3 = n(n − 1)(n − 2), . . . . (1.10)

Observe that

�(nm) = (n + 1)m − nm

= [(n + 1) · · · (n − (m − 2))] − [n · · · (n − (m − 1))].

The lastm − 1 factors in the first term and the firstm − 1 factors in the second
term are both equal to nm−1. So we have

�(nm) = [(n + 1) · nm−1] − [nm−1 · (n − (m − 1))]

= {(n + 1) − (n − (m − 1))} · nm−1

=m · nm−1.

What about negative powers? From Eq. (1.10) we see that

n2 = n3

n − 2
, n1 = n2

n − 1
, n0 = n1

n − 0
.

It makes sense to define the negative powers so that the pattern continues:

n−1 = n0

n − −1
= 1

n + 1
,

n−2 = n−1

n − −2
= 1

(n + 1)(n + 2)
,

n−3 = n−2

n − −3
= 1

(n + 1)(n + 2)(n + 3)
,

...

.
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One can show that for any m, positive or negative,

�(nm) = m · nm−1. (1.11)

Exercise 1.2.2. Verify this in the case of m = −2. That is, show that
�(n−2) = −2 · n−3.

The factorial powers combine in a way that is a little more complicated
than ordinary powers. Instead of xm+k = xm · xk , we have that

nm+k = nm(n − m)k for all m, k. (1.12)

Exercise 1.2.3. Verify this for m = 2 and k = −3. That is, show that n−1 =
n2(n − 2)−3.

The difference operator, �, is like the derivative d/dx , and so one might
ask about the operation that undoes � the way an antiderivative undoes a
derivative. This operation is denoted �:

� f (n) = F(n), if F(n) is a function with �F(n) = f (n).

Don’t be confused by the symbol �; we are not computing any sums. � f (n)
denotes a function, not a number. As in calculus, there is more than one
possible choice for � f (n). We can add a constantC to F(n), because �(C) =
C − C = 0. Just as in calculus, the rule (1.11) implies that

�nm = nm+1

m + 1
+ C for m 
= −1. (1.13)

Exercise 1.2.4. We were already undoing the difference operator in finding
pentagonal and hexagonal numbers. Generalize this to polygonal numbers
with a sides, for any a. That is, find a formula for a function f (n) with

�2 f (n) = a − 2, with f (1) = 1 and f (2) = a.

In calculus, the point of antiderivatives is to compute definite integrals.
Geometrically, this is the area under curves. The Fundamental Theorem of
Calculus says that if

F(x) =
∫
f (x)dx, then

∫ b

a
f (x)dx = F(b) − F(a).

We will think about this more carefully in Interlude 1, but for now the im-
portant point is the finite analog. We can use the operator � on functions to
compute actual sums.
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Theorem (Fundamental Theorem of Finite Calculus, Part I). If

� f (n) = F(n), then
∑
a≤n<b

f (n) = F(b) − F(a).

Proof. The hypothesis � f (n) = F(n) is just another way to say that f (n) =
�F(n). The sum on the left is∑

a≤n<b
f (n) = f (a) + f (a + 1) + · · · + f (b − 2) + f (b − 1)

= �F(a) + �F(a + 1) + · · · + �F(b − 2) + �F(b − 1)

= (F(a + 1) − F(a)) + (F(a + 2) − F(a + 1)) + · · ·
· · · + (F(b − 1) − F(b − 2)) + (F(b) − F(b − 1))

= − F(a) + F(b).

�

Notice that it does not matter which choice of constant C we pick, because
(F(b) + C) − (F(a) + C) = F(b) − F(a).

As an application, we can use the fact that �n1 = n2

2 to say that

1 + 2 + · · · + n =
∑

0≤k<n+1

k1 = (n + 1)2

2
− 02

2
= n(n + 1)

2
.

This is formula (1.6) for triangular numbers.
Here is another example. Because

n1 + n2 = n + n(n − 1) = n2,

we can say that

�n2 = �(n1 + n2) = n2

2
+ n3

3
.

So,

∑
0≤k<n+1

k2 =
(

(n + 1)2

2
+ (n + 1)3

3

)
−
(

02

2
+ 03

3

)

= (n + 1)n

2
+ (n + 1)n(n − 1)

3

= n(n + 1)(2n + 1)

6
.

This is just Eq. (1.7) again.
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Exercise 1.2.5. First, verify that

n1 + 3n2 + n3 = n3.

Now use this fact to find formulas for∑
0≤k<n+1

k3.

Your answer should agree with formula (1.8).

In fact, one can do this for any exponent m. We will see that there are
integers called Stirling numbers,

{
m
k

}
, which allow you to write ordinary

powers in terms of factorial powers:

nm =
m∑
k=0

{
m
k

}
nk . (1.14)

In the preceding example, we saw that{
2
0

} = 0,
{

2
1

} = 1,
{

2
2

} = 1.

In the first part of Exercise 1.2.5, you verified that{
3
0

} = 0,
{

3
1

} = 1,
{

3
2

} = 3,
{

3
3

} = 1.

Exercise 1.2.6. Use the Stirling numbers{
4
0

} = 0,
{

4
1

} = 1,
{

4
2

} = 7,
{

4
3

} = 6,
{

4
4

} = 1

to show that

14 + 24 + · · · + n4 = n(n + 1)(2n + 1)(3n2 + 3n − 1)/30. (1.15)

The Stirling numbers are sort of like the binomial coefficients
(m
k

)
. Bi-

nomial coefficients are found in Pascal’s triangle, which you have probably
seen:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
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The first and last entry in each row is always 1; the rest are computed by adding
the two binomial coefficients on either side in the previous row. Suppose we
make a similar triangle for the Stirling numbers. The Stirling number

{
m
k

}
is

the kth entry in row m here:

1
1 1

1 3 1
1 7 6 1

1 15 25 10 1

Exercise 1.2.7. Try to find the pattern in this triangle, similar to Pascal’s.
Here’s a hint, but don’t read it unless you’re really stuck. The 3 is computed
from the 1 and the second entry, also a 1, above it. The 7 is computed from
the 1 and the second entry, a 3, above it. The 6 is computed from the 3 and
the third entry, a 1, above it. What is the pattern?

Fill in the next row of Stirling’s triangle.

In fact, if we make this a little more precise, we can prove the theorem
now. First, though, we need to define

{
m
0

} =
{

1, if m = 0,

0, if m > 0,
and

{
m
k

} = 0, if k > m or k < 0.

Theorem. If we now define the Stirling numbers by the recursion you dis-
covered, that is,{

m
k

} = k
{
m−1
k

}+ { m−1
k−1

}
,

then Eq. (1.14) is true.

Notice that we have switched our point of view; the recursion is now the
definition and the property (1.14) that we are interested in is a theorem. This
is perfectly legal, as long as we make it clear that is what is happening. You
may have indexed things slightly differently; make sure your recursion is
equivalent to this one.

Proof. We can prove Eq. (1.14) by induction. The case of m = 1 is already
done. From the boundary conditions (k > m or k < 0) defined earlier, we can
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write (1.14) more easily as a sum over all k:

nm =
∑
k

{
m
k

}
nk .

The extra terms are 0. For the inductive step, we can assume that

nm−1 =
∑
k

{
m−1
k

}
nk

in order to prove (1.14). But∑
k

{
m
k

}
nk =

∑
k

(
k
{
m−1
k

}+ { m−1
k−1

} )
nk

by the recursion for Stirling numbers. Thus,∑
k

{
m
k

}
nk =

∑
k

k
{
m−1
k

}
nk +

∑
k

{
m−1
k−1

}
nk .

We need to notice that Eq. (1.12) implies

nk+1 = n · nk − k · nk,
so that

k · nk = n · nk − nk+1.

Plug this in to see that∑
k

{
m
k

}
nk =

∑
k

n · { m−1
k

}
nk −

∑
k

{
m−1
k

}
nk+1 +

∑
k

{
m−1
k−1

}
nk .

The last two sums cancel; they are secretly equal since the factorial power is
always one more than the lower parameter in the Stirling number. So,∑

k

{
m
k

}
nk = n ·

∑
k

{
m−1
k

}
nk = n · nm−1 = nm

by the induction hypothesis. �

Exercise 1.2.8. You now know enough to compute sums of any mth power
in closed form. Show that

15 + 25 + · · · + n5 = (2n2 + 2n − 1)(n + 1)2n2/12. (1.16)

You can find out more about Stirling numbers in Graham, Knuth, and
Patashnik, 1994.

As with the polygonal numbers, once we have a closed-form expression,
there seems to be nothing left to say. But notice that the rule (1.13) misses
one case. There is no factorial power whose difference is n−1. In other words,
�n−1 is not a factorial power. (This is the finite analog of the calculus fact that
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no power of x has derivative 1/x .) So we make a definition instead, defining
the nth harmonic number to be

Hn =
∑

1≤k≤n

1

k
= 1 + 1

2
+ · · · + 1

n
. (1.17)

Notice that after changing the variable slightly, we can also write

Hn =
∑

0≤k<n

1

k + 1
.

What is �Hn? We compute

Hn+1 − Hn =
(

1 + 1

2
+ · · · + 1

n
+ 1

n + 1

)
−
(

1 + 1

2
+ · · · + 1

n

)

= 1

n + 1
= n−1.

So, the Harmonic numbers are the finite analog of logarithms in that

�Hn = n−1

is true. Harmonic numbers are interesting, as shown in Eq. (1.17), which
provides a generalization of the formulas (1.6), (1.7), (1.8), (1.15), and (1.16).
In some sense they are even more interesting, because there is no closed-form
expression for them as for the formulas mentioned earlier.

Actually, we can do this same procedure for any f (n), not just n−1.

Theorem (Fundamental Theorem of Finite Calculus, Part II). If a new
function F(n) is defined by

F(n) =
∑

0≤k<n
f (n) for some f (n),

then

�F(n) = f (n), so F(n) = � f (n).

Proof. This proof is exactly the same as the proof for the Harmonic
numbers. �

Exercise 1.2.9. Suppose that f (n) = 2n (ordinary exponent, not factorial).
Show that � f (n) = f (n) and f (0) = 1. What function in calculus are we
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imitating? Use the Fundamental Theorem, Part I, to show that

1 + 2 + 22 + · · · + 2n =
∑

0≤k<n+1

2k = 2n+1 − 1.

Exercise 1.2.10. More generally, suppose that f (n) = xn . Here x 
= 1 is a
constant, and n is still the variable. Show that � f (n) = (x − 1) f (n), and
therefore � f (n) = f (n)/(x − 1). Use this to show that

1 + x + x2 + · · · + xn =
∑

0≤k<n+1

xk = xn+1 − 1

x − 1
.

This sum is called the geometric series.

Exercise 1.2.11. The Rhind papyrus is the oldest known mathematical doc-
ument: 14 sheets of papyrus from the fifteenth dynasty, or about 1700 b.c.
Problem 79 says, “There are seven houses. Each house has seven cats. Each
cat catches seven mice. Each mouse eats seven ears of spelt [a grain related
to wheat]. Each ear of spelt produces seven hekats [a bulk measure]. What is
the total of all of these?” Use the Geometric series to answer this, the oldest
known mathematical puzzle.

Archimedes, too, knew of the Geometric series.

Archimedes (287–212 B.C.). Archimedes is better known for his beautiful the-
orems on area and volume in geometry than for his work in number theory.
However, the Geometric series and other series, as we will see, are vital in
number theory. Archimedes used the Geometric series in his work Quadra-
ture of the Parabola. He approximated the area below a parabola using a
collection of congruent triangles. The sum of the areas was a Geometric se-
ries. Archimedes’ works were not widely studied until the Byzantines wrote
commentaries in the sixth century a.d. Thabit ibn Qurra wrote commentaries
in the ninth century. From these texts, Archimedes’ work became known in
the west. Nicole Oresme quoted at length from Archimedes, as did Leonardo
of Pisa.

Accounts of his death by Livy, Plutarch, and others all more or less agree
that he was killed by a Roman soldier in the sack of Syracuse (in Sicily)
in 212 b.c., while he was doing some mathematics. His grave was marked
by a cylinder circumscribing a sphere, to commemorate his theorem in solid
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geometry: that the ratio of the volumes is 3:2. Cicero, as Quaestor of Sicily
in 75 b.c., described his search for the site (Cicero, 1928):

I shall call up from the dust on which he drew his figures an obscure, insignificant person,
Archimedes. I tracked out his grave . . . and found it enclosed all round and covered with
brambles and thickets . . . . I noticed a small column rising a little above the bushes, on
which there was a figure of a sphere and a cylinder . . . . Slaves were sent in with sickles
and when a passage to the place was opened we approached the pedestal; the epigram
was traceable with about half of the lines legible, as the latter portion was worn away.

Cicero goes on to add,

Who in all the world, who enjoys merely some degree of communion with the
Muses, . . . is there who would not choose to be the mathematician rather than the tyrant?

The most useful trick in calculus for finding antiderivatives is “u substi-
tution.” This does not translate very well to finite calculus, except for very
simple changes of variables involving translation. That is, if � f (k) = g(k)
and a is any constant, then �( f (k + a)) = g(k + a).

Exercise 1.2.12. Use this and the fact that 2(k − 1)−2 = 1/tk to find the sum
of the reciprocals of the first n triangular numbers

1

t1
+ 1

t2
+ · · · + 1

tn
.

Can you compute

1

T1
+ 1

T2
+ · · · + 1

Tn
,

the sum of the reciprocals of the first n tetrahedral numbers?

Toward the end of this book, we will need one more tool based on this finite
analog of calculus. If you are just casually skimming, you may skip the rest
of this chapter. In calculus, another useful method of finding antiderivatives
is integration by parts. This is exactly the same thing as the product rule
for derivatives, just written in antiderivative notation. That is, if you have
functions u(x) and v(x), then

(u(x)v(x))′ = u(x)′v(x) + u(x)v(x)′;

so,

u(x)v(x)′ = (u(x)v(x))′ − u(x)′v(x).
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If we take antiderivatives of both sides of the equation and use the fact that∫
(u(x)v(x))′dx = u(x)v(x), we get∫

u(x)v(x)′dx = u(x)v(x) −
∫
u(x)′v(x)dx .

If we suppress mention of the variable x and use the abbreviations u(x)′dx =
du and v(x)′dx = dv, then this is the formula for integration by parts you
know and love (or at least know):∫

udv = uv −
∫

vdu.

For a finite analog, it seems we should start by applying the difference
operator, �, to a product of two functions, for an analog of the product rule.
This gives

�(u(n)v(n)) = u(n + 1)v(n + 1) − u(n)v(n).

We can add and subtract a term u(n)v(n + 1) to get

�(u(n)v(n)) = u(n + 1)v(n + 1) − u(n)v(n + 1)

+ u(n)v(n + 1) − u(n)v(n)

= (u(n + 1) − u(n))v(n + 1)

+ u(n)(v(n + 1) − v(n))

= �u(n)v(n + 1) + u(n)�v(n).

This is not exactly what you might expect. The function v is shifted by one
so that v(n + 1) appears. We will denote this shift operator on functions by
E , so E f (n) = f (n + 1). Then the product rule in this setting says

�(uv) = �u · Ev + u · �v

when the variable n is suppressed. As in the derivation of the integration-by-
parts formula, we rearrange the terms to say

u · �v = �(uv) − �u · Ev.

Applying the � operator, which undoes �, we get that

�(u · �v) = uv − �(�u · Ev).

This identity is called summation by parts. Remember that so far it is just
an identity between functions.



1.2 The Finite Calculus 23

Suppose we want to use Summation by Parts to compute∑
0≤k<n

k1Hk .

First we need to find the function �(k1Hk). Let u(k) = Hk , so �u(k) = k−1.
Then k1 = �v(k), so we can choose v(k) = k2/2. Summation by Parts says
that

�(k1Hk) = Hk · k
2

2
− �

(
E

(
k2

2

)
k−1
)

.

Now k2/2 = k(k − 1)/2, so E(k2/2) = (k + 1)k/2, and then E(k2/2)k−1 is
equal to k/2 = k1/2. Thus,

�k1Hk = Hk · k
2

2
− �

k1

2

= Hk · k
2

2
− k2

4

= k2

2

(
Hk − 1

2

)
.

Remember, this is just saying that

�

(
k2

2

(
Hk − 1

2

))
= k1Hk .

Now the Fundamental Theorem, Part I, says that

∑
0≤k<n

k1Hk =
(
n2

2

(
Hn − 1

2

))
−
(

02

2

(
H0 − 1

2

))

= n2

2

(
Hn − 1

2

)
.

Exercise 1.2.13. Use Summation by Parts and the Fundamental Theorem
to compute

∑
0≤k<n Hk . (Hint: You can write Hk = Hk · 1 = Hk · k0.) Your

answer will have Harmonic numbers in it, of course.

Exercise 1.2.14. Use Summation by Parts and the Fundamental Theorem to
compute

∑
0≤k<n k2

k . (Hint: You need the first part of Exercise 1.2.9.)


