
160 II. Differential and Integral Calculus

II.10 The Euler-Maclaurin Summation Formula

The King calls me “my Professor”, and I am the happiest man in the world!
(Euler is proud to serve Frederick II in Berlin)

I have here a geometer who is a big cyclops . . . who has only one eye left,
and a new curve, which he is presently computing, could render him totally
blind. (Frederick II; see Spiess 1929, p. 165-166.)

This formula was developed independently by Euler (1736) and Maclaurin (1742)
as a powerful tool for the computation of sums such as the harmonic sum 1 +
1
2 + 1

3 + . . . + 1
n , the sum of logarithms ln 2 + ln 3 + ln 4 + . . . + lnn = lnn!,

the sum of powers 1k + 2k + 3k + . . . + nk, or the sum of reciprocal powers
1 + 1

2k + 1
3k + . . .+ 1

nk , with the help of differential calculus.

Problem. For a given function f(x), find a formula for

(10.1) S = f(1) + f(2) + f(3) + . . .+ f(n) =

n∑

i=1

f(i)

(“investigatio summae serierum ex termino generali”).

Euler’s Derivation of the Formula

The first idea (see Euler 1755, pars posterior, § 105, Maclaurin 1742, Book II,
Chap. IV, p. 663f) is to consider also the sum with shifted arguments

(10.2) s = f(0) + f(1) + f(2) + . . .+ f(n− 1).

We compute the differenceS−s using Taylor’s series (Eq. (2.8) with x−x0 = −1)

f(i− 1)− f(i) = −f
′(i)

1!
+
f ′′(i)

2!
− f ′′′(i)

3!
+ . . .

and find

f(n)− f(0) =

n∑

i=1

f ′(i)− 1

2!

n∑

i=1

f ′′(i) +
1

3!

n∑

i=1

f ′′′(i)− 1

4!

n∑

i=1

f ′′′′(i) + . . .

In order to turn this formula for
∑
f ′(i) into a formula for

∑
f(i), we replace f

by its primitive (again denoted by f ):
(10.3)
n∑

i=1

f(i) =

∫ n

0

f(x) dx+
1

2!

n∑

i=1

f ′(i)− 1

3!

n∑

i=1

f ′′(i) +
1

4!

n∑

i=1

f ′′′(i)− . . . .

The second idea is to remove the sums
∑
f ′,

∑
f ′′,

∑
f ′′′, on the right by using

the same formula, with f successively replaced by f ′, f ′′, f ′′′ etc. This will lead
to a formula of the type
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(10.4)

n∑

i=1

f(i) =

∫ n

0

f(x) dx− α
(
f(n)− f(0)

)
+ β

(
f ′(n)− f ′(0)

)

− γ
(
f ′′(n)− f ′′(0)

)
+ δ

(
f ′′′(n)− f ′′′(0)

)
− . . .

For the computation of the coefficients α, β, γ, . . . we successively replace f in
(10.4) by f ′, f ′′, . . . to obtain

∑
f(i) =

∫ n
0 f(x) dx −α(f(n)− f(0)) +β(f ′(n)− f ′(0)) − . . .

− 1
2!

∑
f ′(i) = − 1

2! (f(n)− f(0)) + α
2! (f

′(n)− f ′(0)) − . . .
1
3!

∑
f ′′(i) = + 1

3! (f
′(n)− f ′(0)) − . . .

...

The sum of all this, by (10.3), has to be
∫ n
0 f(x) dx. Therefore, we obtain

(10.5) α+
1

2!
= 0, β +

α

2!
+

1

3!
= 0, γ +

β

2!
+
α

3!
+

1

4!
= 0, . . . ,

from which we can compute α = − 1
2 , β = 1

12 , γ = 0, δ = − 1
720 , . . . and we

have

n∑

i=1

f(i) =

∫ n

0

f(x) dx +
1

2

(
f(n)−f(0)

)
+

1

12

(
f ′(n)−f ′(0)

)

− 1

720

(
f ′′′(n)−f ′′′(0)

)
+

1

30240

(
f (5)(n)−f (5)(0)

)
+ . . . .

(10.6)

(10.1) Example. This formula, applied to a sum of nearly a million terms,

1

11
+

1

12
+

1

13
+ . . .+

1

1000000
= ln(106)− ln(10) +

1

2
10−6 − 1

20

+
1

1200
− 1

120
10−4 +

1

252
10−6 + . . . ≈ 11.463758469,

gives an excellent approximation of the exact result by a couple of terms only. The
formula is, however, of no use for the computation of the first terms 1+ 1

2+. . .+ 1
10 .

Bernoulli Numbers. It is customary to replace the coefficients α, β, γ, . . . by
Bi/i! (B0 = 1, α = B1/1!, β = B2/2!, . . .), so that (10.5) becomes

(10.5′) 2B1 +B0 = 0, 3B2 + 3B1 +B0 = 0, . . . ,

k−1∑

i=0

(
k

i

)
Bi = 0.

The Bernoulli numbers, as far as Euler calculated them, are
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B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
,

B10 =
5

66
, B12 = − 691

2730
, B14 =

7

6
, B16 = −3617

510
, B18 =

43867

798
,

B20 = −174611

330
, B22 =

854513

138
, B24 = −236364091

2730
,

B26 =
8553103

6
, B28 = −23749461029

870
, B30 =

8615841276005

14322
,

and B3 = B5 = . . . = 0. In this notation, Eq. (10.6) becomes

n∑

i=1

f(i) =

∫ n

0

f(x) dx+
1

2

(
f(n)− f(0)

)

+
∑

k≥1

B2k

(2k)!

(
f (2k−1)(n)− f (2k−1)(0)

)
.

(10.6′)

Example. For f(x) = xq the series of Eq. (10.6′) is finite and gives the well-known
formula of Jac. Bernoulli (I.1.28), (I.1.29).

Generating Function. In order to get more insight into the Bernoulli numbers,
we apply one of Euler’s great ideas: consider the function V (u) whose Taylor
coefficients are the numbers under consideration, i.e., define

(10.7)
V (u) = 1 + αu + βu2 + γu3 + δu4 + . . .

= 1 +
B1

1!
u+

B2

2!
u2 +

B3

3!
u3 +

B4

4!
u4 + . . . .

Now the formulas (10.5) alias (10.5′) say simply that

V (u) ·
(
1 +

u

2!
+
u2

3!
+
u3

4!
+ . . .

)
= 1,

that is,

(10.8) V (u) =
u

eu − 1
.

Thus, the infinitely many algebraic equations become one analytic formula. The
fact that

(10.9) V (u) +
u

2
=

u

eu − 1
+
u

2
=
u

2
· e

u/2 + e−u/2

eu/2 − e−u/2

is an even function shows that B3 = B5 = B7 = . . . = 0.
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De Usu Legitimo Formulae Summatoriae Maclaurinianae

We now insert f(x) = cos(2πx), for which f(i) = 1 for all i, into Eq. (10.6′).
This gives 1 + 1 + . . . + 1 to the left, and 0 + 0 + 0 + . . . to the right, because
cos(2πx) together with all its derivatives is periodic with period 1. We see that the
formula as it stands is wrong! Another problem is that for most functions f the
infinite series in (10.6′) usually does not converge.

It is therefore necessary to truncate the formula after a finite number of terms
and to obtain an expression for the remainder. This was done in beautiful Latin
(see above) by Jacobi (1834) by rearranging Euler’s proof using the error term
(4.32) of Bernoulli-Cauchy throughout. It was later discovered (Wirtinger 1902)
that the proof can be done simply by repeated integration by parts in a similar
manner to the proof of Eq. (4.32). The main ingredient of the proof is the so-called
Bernoulli polynomials.

Bernoulli Polynomials. The polynomials

B1(x) = B0x+B1 = x− 1
2

B2(x) = B0x
2 + 2B1x+B2 = x2 − x+ 1

6
B3(x) = B0x

3 + 3B1x
2 + 3B2x+B3 = x3 − 3

2x
2 + 1

2x
B4(x) = B0x

4 + 4B1x
3 + 6B2x

2 + 4B3x+B4 = x4 − 2x3 + x2 − 1
30 ,

or, in general,

(10.10) Bk(x) =
k∑

i=0

(
k

i

)
Bix

k−i,

satisfy

(10.11) B′
k(x) = kBk−1(x), Bk(0) = Bk(1) = Bk (k ≥ 2).

Indeed, the first formula of (10.11) is a property of the binomial coefficients (see
Theorem I.2.1); the second formula follows from the definition and from (10.5′).

(10.2) Theorem.We have

n∑

i=1

f(i) =

∫ n

0

f(x) dx+
1

2

(
f(n)− f(0)

)

+
k∑

j=2

(−1)jBj
j!

(
f (j−1)(n)− f (j−1)(0)

)
+ R̃k,

where

(10.12) R̃k =
(−1)k−1

k!

∫ n

0

B̃k(x) f
(k)(x) dx.

Here, B̃k(x) is equal to Bk(x) for 0 ≤ x ≤ 1 and extended periodically with
period 1 (see Fig. 10.1).
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FIGURE 10.1. Bernoulli polynomials
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Proof. We start by proving the statement for n = 1. Using B′
1(x) = 1 and inte-

grating by parts we have

∫ 1

0

f(x) dx =

∫ 1

0

B′
1(x)f(x) dx = B1(x)f(x)

∣∣∣
1

0
−

∫ 1

0

B1(x)f
′(x) dx.

The first term is 1
2 (f(1) + f(0)). In the second term we insert from (10.11)

B1(x) = 1
2B

′
2(x) and integrate once again. This gives

∫ 1

0

f(x) dx =
1

2

(
f(1) + f(0)

)
− B2

2!

(
f ′(1)− f ′(0)

)
+

1

2!

∫ 1

0

B2(x)f
′′(x) dx

or, continuing like this,
(10.13)

1

2

(
f(1)+ f(0)

)
=

∫ 1

0

f(x) dx+
k∑

j=2

(−1)jBj
j!

(
f (j−1)(1)− f (j−1)(0)

)
+Rk,

with

(10.14) Rk =
(−1)k−1

k!

∫ 1

0

Bk(x) f
(k)(x) dx.

We next apply Eq. (10.14) to the shifted functions f(x+ i− 1), observe that

∫ 1

0

Bk(x)f
(k)(x+ i− 1) dx =

∫ i

i−1

B̃k(x)f
(k)(x) dx,

and obtain the statement of Theorem 10.2 by summing these formulas from i = 1
to i = n. ⊓⊔
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Estimating the Remainder. The estimates (for 0 ≤ x ≤ 1)

|B1(x)| ≤
1

2
, |B2(x)| ≤

1

6
, |B3(x)| ≤

√
3

36
, |B4(x)| ≤

1

30
,

which are easy to check, and the fact that |
∫ n
0
g(x) dx| ≤

∫ n
0
|g(x)| dx, show that

(10.15) |R̃1| ≤
1

2

∫ n

0

|f ′(x)| dx, |R̃2| ≤
1

12

∫ n

0

|f ′′(x)| dx, . . . .

These are the desired rigorous estimates of the remainder of Euler-Maclaurin’s
summation formula. Further maximal and minimal values of the Bernoulli poly-
nomials have been computed by Lehmer (1940); see Exercise 10.3.

(10.3) Remark. If we apply the formula of Theorem 10.2 to the function f(t) =
hg(a + th) with h = (b − a)/n and if we pass the term

(
f(n) − f(0)

)
/2 to the

left side, we obtain (with xi = a+ ih)

h

2
g(x0) + h

n−1∑

i=1

g(xi) +
h

2
g(xn) =

∫ b

a

g(x) dx

+

k∑

j=2

hj

j!
Bj

(
g(j−1)(b)− g(j−1)(a)

)
(10.16)

+ (−1)k−1h
k+1

k!

∫ n

0

B̃k(t)g
(k)(a+ th) dt,

where we recognize on the left the trapezoidal rule. Equation (10.16) shows that
the dominating term of the error is (h2/12)

(
g′(b)− g′(a)

)
. However, if g is peri-

odic, then all terms in the Euler-Maclaurin series disappear and the error is equal
to R̃k for an arbitrary k; this explains the surprisingly good results of Table 6.2
(Sect. II.6).

Stirling’s Formula

We put f(x) = lnx in the Euler-Maclaurin formula. Since

n∑

i=2

f(i) = ln 2 + ln 3 + ln 4 + ln 5 + . . .+ lnn = ln (n!),

we will obtain an approximate expression for the factorials n! = 1 · 2 · . . . · n.

(10.4) Theorem (Stirling 1730).We have

(10.17) n! =

√
2πn nn

en
· exp

( 1

12n
− 1

360n3
+

1

1260n5
− 1

1680n7
+ R̃9

)
,
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where |R̃9| ≤ 0.0006605/n8. This gives, for n→∞, the approximation

(10.18) n! ≈
√

2πn nn

en
.

Remark. This famous formula is especially useful in combinatorial analysis, statis-
tics, and probability theory. Equation (10.17) is truncated after the 4th term simply
because one additional term would not fit into the same line.

The numerical values of (10.18) and (10.17) (with one, two and three terms)
for n = 10 and n = 100 are compared to n! in Table 10.1.

TABLE 10.1. Factorial function and approximations by Stirling’s formula

n = 10 : Stirling 0 = 0.35|9869561874103592162317593283 · 107

Stirling 1 = 0.36288|1005142693352994116531675 · 107

Stirling 2 = 0.36287999|7141301292538591223941 · 107

Stirling 3 = 0.3628800000|21301281279077612862 · 107

n! = 0.362880000000000000000000000000 · 107

n = 100 : Stirling 0 = 0.93|2484762526934324776475612718 · 10158

Stirling 1 = 0.93326215|7031762340989619195146 · 10158

Stirling 2 = 0.933262154439|367463946383356624 · 10158

Stirling 3 = 0.9332621544394415|32371338864918 · 10158

n! = 0.933262154439441526816992388563 · 10158

Proof. We have seen above (Example 10.1) that the Euler-Maclaurin formula is
inefficient if the higher derivatives of f(x) become large on the considered inter-
val. We therefore apply the formula with f(x) = lnx for the sum from i = n+ 1
to i = m. Since

∫
lnxdx = x lnx− x, dj

dxj
(
lnx

)
= (−1)j−1 (j − 1)!

xj
,

we obtain from Theorem 10.2 that
m∑

i=n+1

f(i) = lnm!− lnn! = m lnm−m− (n lnn− n) +
1

2

(
lnm− lnn

)

+
1

12

( 1

m
− 1

n

)
− 1

360

( 1

m3
− 1

n3

)
+ R̃5,(10.19)

where |R̃5| ≤ 0.00123/n4 for all m > n. This estimate is obtained from (10.12)
and (10.15) and the fact that |B5(x)| ≤ 0.02446 for 0 ≤ x ≤ 1. In (10.19),
the terms lnn!, n lnn, n, and (1/2) lnn diverge individually for n → ∞. We
therefore take them together and set
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(10.20) γn = lnn! + n−
(
n+

1

2

)
lnn,

and (10.19) becomes

(10.21) γn = γm +
1

12

( 1

n
− 1

m

)
− 1

360

( 1

n3
− 1

m3

)
− R̃5.

For n and m sufficiently large γn and γm become arbitrarily close. Therefore, it
appears that the values γm converge, for m → ∞, to a value that we denote by γ
(the precise proof will be given in Theorem III.1.8 of Cauchy). We then take the
limit m→∞ in Eq. (10.21) and obtain

lnn! + n−
(
n+

1

2

)
lnn = γ +

1

12n
− 1

360n3
+ R̂5,

where |R̂5| ≤ 0.00123/n4. Taking the exponential function of this expression we
get

(10.22) n! = Dn

√
n nn

en
with Dn = eγ · exp

( 1

12n
− 1

360n3
+ R̂5

)
.

This proves (10.18) and also (10.17), as soon as we have seen that the limit of Dn

(i.e., D = eγ) is actually equal to
√

2π. To this end, we compute, from (10.22),

Dn ·Dn

D2n
=
n! · n! · (2n)2n · e−2n

√
2n

n2n · e−2n · n · (2n)!
=

2 · 4 · 6 · 8 · . . . · 2n
1 · 3 · 5 · 7 · . . . · (2n− 1)

·
√

2√
n
,

which tends to D too. This formula reminds us of Wallis’s product of Eq. (I.5.27).
Indeed, its square,

(Dn ·Dn

D2n

)2

=
2 · 2 · 4 · 4 · 6 · 6 · · · (2n)(2n)

1 · 3 · 3 · 5 · 5 · 7 · · · (2n− 1)(2n+ 1)︸ ︷︷ ︸
→ π/2

· 2(2n+ 1)

n︸ ︷︷ ︸
→ 4

,

tends to 2π, so that D =
√

2π. The stated estimate for R̃9 follows from (10.12)
and |B9(x)| ≤ 0.04756. ⊓⊔

The Harmonic Series and Euler’s Constant

We try to compute

1 +
1

2
+

1

3
+

1

4
+ . . .+

1

n

by putting f(x) = 1/x in Theorem 10.2. Since f (j)(x) = (−1)jj!x−j−1, we get,
instead of (10.19),
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FIGURE 10.2. Euler’s autograph (letter to Joh. Bernoulli 1740, see Fellmann 1983, p. 96)1

(10.23)

m∑

i=n+1

1

i
=

∫ m

n

1

x
dx+

1

2

( 1

m
− 1

n

)
− 1

12

( 1

m2
− 1

n2

)

+
1

120

( 1

m4
− 1

n4

)
− 1

252

( 1

m6
− 1

n6

)
+

1

240

( 1

m8
− 1

n8

)
+ R̃9,

where, because of |B9(x)| ≤ 0.04756, we have |R̃9| ≤ 0.00529/n9. The diverg-
ing terms to collect will now be, instead of (10.20),

γn =

n∑

i=1

1

i
− lnn,

which is investigated precisely as above and seen to converge. This time, the con-
stant obtained,

(10.24) 1 +
1

2
+

1

3
+ . . .+

1

n
− lnn→ γ = 0.57721566490153286 . . . ,

is a new constant in mathematics and is called “Euler’s constant” (see Fig. 10.2
for an autograph of Euler containing his constant and its use for the computation
of the sum of Example 10.1). Letting, as before, m→∞ in (10.23), we obtain

(10.25)
n∑

i=1

1

i
= γ + lnn+

1

2n
− 1

12n2
+

1

120n4
− 1

252n6
+

1

240n8
+ R̃9,

where |R̃9| ≤ 0.00529/n9. To find the constant γ, we put, for example, n = 10
(as did Euler) in Eq. (10.25) and obtain the value of (10.24). This constant was
computed with great precision by D. Knuth (1962). It is still not known whether it
is rational or irrational.
1 Reproduced with permission of Birkhaeuser Verlag, Basel.
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Exercises

10.1 The spiral of Theodorus is composed of rectangular triangles of sides 1,
√
n,

and
√
n+ 1. It performs a complete rotation after 17 triangles (this seems to

be the reason why Theodorus did not consider roots beyond
√

17 ). No longer
prevented by such scruples, we now want to know how many rotations a
billion such triangles perform. This requires the calculation of (see Fig. 10.3)

1 +
1

2π

1000000000∑

i=18

arctan
1√
i

with an error smaller than 1. This exercise is not only a further occasion to
admire the power of the Euler-Maclaurin formula, but also leaves us with an
interesting integral to evaluate.

FIGURE 10.3. The spiral of Theodorus of Cyrene, 470–390 B.C.

10

1

1

1
1

50

√
2

√
3

√
4√

5

10.2 (Formula for the Taylor series of tanx). If we let cotx = 1/ tanx and
cothx = 1/ tanhx, Eq. (10.9) can be seen to represent the Taylor series of
(x/2) coth(x/2). This allows us to obtain the series expansion of x · cothx,
and, by letting x 7→ ix, that of x · cotx. Finally, use the formula

2 · cot 2x = cotx− tanx

and obtain the coefficients of the expansion of tanx. Compare it with
Eq. (I.4.18).

10.3 Verify numerically the estimates (Lehmer 1940)

|B3(x)| ≤ 0.04812, |B5(x)| ≤ 0.02446, |B7(x)| ≤ 0.02607,

|B9(x)| ≤ 0.04756, |B11(x)| ≤ 0.13250, |B13(x)| ≤ 0.52357

for 0 ≤ x ≤ 1.




