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Lecture 21 - An overview of Lie groups

The (unofficial) goal of the last third of the course is to prove no theo-
rems. We’ll talk about

1. Lie groups in general,

2. Clifford algebras and Spin groups,

3. Construction of all Lie groups and all representations. You might
say this is impossible, so let’s just try to do all simple ones, and in
particular E8, E7, E6.

4. Representations of SL2(R).

Lie groups in general

In general, a Lie group G can be broken up into a number of pieces.
The connected component of the identity, Gconn ⊆ G, is a normal

subgroup, and G/Gconn is a discrete group.

1 −→ Gconn −→ G −→ Gdiscrete −→ 1

The maximal connected normal solvable subgroup of Gconn is called
Gsol. Recall that a group is solvable if there is a chain of subgroups Gsol ⊇
· · · ⊇ 1, where consecutive quotients are abelian. The Lie algebra of a
solvable group is solvable (by Exercise 11.2), so Lie’s theorem (Theorem
11.11) tells us that Gsol is isomorphic to a subgroup of the group of upper
triangular matrices.

Every normal solvable subgroup of Gconn/Gsol is discrete, and there-
fore in the center (which is itself discrete). We call the pre-image of the
center G∗. Then G/G∗ is a product of simple groups (groups with no
normal subgroups).
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Since Gsol is solvable, Gnil := [Gsol, Gsol] is nilpotent, i.e. there is a chain
of subgroups Gnil ⊇ G1 ⊇ · · · ⊇ Gk = 1 such that Gi/Gi+1 is in the
center of Gnil/Gi+1. In fact, Gnil must be isomorphic to a subgroup of
the group of upper triangular matrices with ones on the diagonal. Such
a group is called unipotent.
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We have the picture

G

Gconn

G∗
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Gnil

1


discrete; classification hopeless



∏

connected simples; classified


abelian discrete

abelian




classification trivial


nilpotent; classification a mess






connected

The classification of connected simple Lie groups is quite long. There are
many infinite series and a lot of exceptional cases. Some infinite series
are PSU(n), PSLn(R), and PSLn(C).1

One way to get many connected simple Lie groups is not observe
that there is a unique connected simple Lie group for each simple Lie
algebra. We’ve already classified complex Lie algebras, and it turns
out that there a finite number of real Lie algebras which complexify to
any given complex Lie algebra. We will classify all such real forms in
Lecture 29.

For example, sl2(R) 6≃ su2(R), but sl2(R)⊗C ≃ su2(R)⊗C ≃ sl2(C).
By the way, sl2(C) is simple as a real Lie algebra, but its complexification
is sl2(C) ⊕ sl2(C), which is not simple. Thus, we cannot obtain all
connected simple groups this way.

Example 21.1. Let G be the group of all shape-preserving transforma-
tions of R4 (i.e. translations, reflections, rotations, and scaling). It is
sometimes called R4 · GO4(R). The R4 stands for translations, the G
means that you can multiply by scalars, and the O means that you can
reflect and rotate. The R4 is a normal subgroup. In this case, we have

Gconn/Gsol

= SO4(R)







R4 ·GO4(R) = G

R4 ·GO+
4 (R) = Gconn

R4 · R× = G∗

R4 · R+ = Gsol

R4 = Gnil

G/Gconn = Z/2Z

Gconn/G∗ = PSO4(R)
(
≃ SO3(R) × SO3(R)

)

G∗/Gsol = Z/2Z

Gsol/Gnil = R+

1The P means “mod out by the center”.
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where GO+
4 (R) is the connected component of the identity (those trans-

formations that preserve orientation), R× is scaling by something other
than zero, and R+ is scaling by something positive. Note that SO3(R) =
PSO3(R) is simple.

SO4(R) is “almost” the product SO3(R)×SO3(R). To see this, con-
sider the associative (but not commutative) algebra of quaternions, H.
Since qq̄ = a2 +b2 +c2 +d2 > 0 whenever q 6= 0, any non-zero quaternion
has an inverse (namely, q̄/qq̄). Thus, H is a division algebra. Think of H
as R4 and let S3 be the unit sphere, consisting of the quaternions such
that ‖q‖ = qq̄ = 1. It is easy to check that ‖pq‖ = ‖p‖ · ‖q‖, from which
we get that left (right) multiplication by an element of S3 is a norm-
preserving transformation of R4. So we have a map S3 × S3 → O4(R).
Since S3 ×S3 is connected, the image must lie in SO4(R). It is not hard
to check that SO4(R) is the image. The kernel is {(1, 1), (−1,−1)}. So
we have S3 × S3/{(1, 1), (−1,−1)} ≃ SO4(R).

Conjugating a purely imaginary quaternion by some q ∈ S3 yields
a purely imaginary quaternion of the same norm as the original, so we
have a homomorphism S3 → O3(R). Again, it is easy to check that the
image is SO3(R) and that the kernel is ±1, so S3/{±1} ≃ SO3(R).

So the universal cover of SO4(R) (a double cover) is the cartesian
square of the universal cover of SO3(R) (also a double cover). Orthog-
onal groups in dimension 4 have a strong tendency to split up like this.
Orthogonal groups in general tend to have these double covers, as we
shall see in Lectures 23 and 24. These double covers are important if
you want to study fermions.

Lie groups and Lie algebras

Let g be a Lie algebra. We can set gsol = rad g to be the maximal solvable
ideal (normal subalgebra), and gnil = [gsol, gsol]. Then we get the chain

g

gsol

gnil

0



∏

simples; classification known


abelian; easy to classify


nilpotent; classification a mess

We have an equivalence of categories between simply connected Lie
groups and Lie algebras. The correspondence cannot detect

– Non-trivial components of G. For example, SOn and On have the
same Lie algebra.
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– Discrete normal (therefore central, Lemma 5.1) subgroups of G. If
Z ⊆ G is any discrete normal subgroup, then G and G/Z have the
same Lie algebra. For example, SU(2) has the same Lie algebra as
PSU(2) ≃ SO3(R).

If G̃ is a connected and simply connected Lie group with Lie algebra g,
then any other connected group G with Lie algebra g must be isomorphic
to G̃/Z, where Z is some discrete subgroup of the center. Thus, if you
know all the discrete subgroups of the center of G̃, you can read off all
the connected Lie groups with the given Lie algebra.

Let’s find all the groups with the algebra so4(R). First let’s find a
simply connected group with this Lie algebra. You might guess SO4(R),
but that isn’t simply connected. The simply connected one is S3 × S3

as we saw earlier (it is a product of two simply connected groups, so it
is simply connected). The center of S3 is generated by −1, so the center
of S3 × S3 is (Z/2Z)2, the Klein four group. There are three subgroups
of order 2

(Z/2Z)2

ww
ww

ww
GG

GG
GG

(−1, 1)

GG
GG

GG
GG

(−1,−1) (1,−1)

ww
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1

PSO4(R)

pppppppp
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SO3(R) × S3

NNNNNNNN
SO4(R) S3 × SO3(R)

pppppppp

S3 × S3

Therefore, there are 5 groups with Lie algebra so4.

Lie groups and finite groups

1. The classification of finite simple groups resembles the classification
of connected simple Lie groups when n ≥ 2.

For example, PSLn(R) is a simple Lie group, and PSLn(Fq) is a
finite simple group except when n = q = 2 or n = 2, q = 3. Simple
finite groups form about 18 series similar to Lie groups, and 26 or
27 exceptions, called sporadic groups, which don’t seem to have
any analogues for Lie groups.

2. Finite groups and Lie groups are both built up from simple and
abelian groups. However, the way that finite groups are built is
much more complicated than the way Lie groups are built. Finite
groups can contain simple subgroups in very complicated ways; not
just as direct factors.

For example, there are wreath products. Let G and H be finite
simple groups with an action of H on a set of n points. Then H
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acts on Gn by permuting the factors. We can form the semi-direct
product Gn⋉H , sometimes denoted G≀H . There is no analogue for
(finite dimensional) Lie groups. There is an analogue for infinite
dimensional Lie groups, which is why the theory becomes hard in
infinite dimensions.

3. The commutator subgroup of a solvable finite group need not be
a nilpotent group. For example, the symmetric group S4 has com-
mutator subgroup A4, which is not nilpotent.

Lie groups and Algebraic groups (over R)

By algebraic group, we mean an algebraic variety which is also a group,
such as GLn(R). Any algebraic group is a Lie group. Probably all the
Lie groups you’ve come across have been algebraic groups. Since they
are so similar, we’ll list some differences.

1. Unipotent and semisimple abelian algebraic groups are totally dif-
ferent, but for Lie groups they are nearly the same. For example
R ≃ {( 1 ∗

0 1 )} is unipotent and R× ≃
{(

a 0
0 a−1

)}
is semisimple. As

Lie groups, they are closely related (nearly the same), but the Lie
group homomorphism exp : R→ R× is not algebraic (polynomial),
so they look quite different as algebraic groups.

2. Abelian varieties are different from affine algebraic groups. For
example, consider the (projective) elliptic curve y2 = x3+x with its
usual group operation and the group of matrices of the form

(
a b
−b a

)

with a2 + b2 = 1. Both are isomorphic to S1 as Lie groups, but
they are completely different as algebraic groups; one is projective
and the other is affine.

3. Some Lie groups do not correspond to ANY algebraic group. We
give two examples here.

The Heisenberg group is the subgroup of symmetries of L2(R) gen-
erated by translations (f(t) 7→ f(t + x)), multiplication by e2πity

(f(t) 7→ e2πityf(t)), and multiplication by e2πiz (f(t) 7→ e2πizf(t)).
The general element is of the form f(t) 7→ e2πi(yt+z)f(t+ x). This
can also be modelled as











1 x z
0 1 y
0 0 1
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0 1 0
0 0 1
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It has the property that in any finite dimensional representation,
the center (elements with x = y = 0) acts trivially, so it cannot be
isomorphic to any algebraic group.
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The metaplectic group. Let’s try to find all connected groups with
Lie algebra sl2(R) = {( a bc d ) |a + d = 0}. There are two obvious
ones: SL2(R) and PSL2(R). There aren’t any other ones that can
be represented as groups of finite dimensional matrices. However,
if you look at SL2(R), you’ll find that it is not simply connected.
To see this, we will use Iwasawa decomposition (without proof).

Theorem 21.2 (Iwasawa decomposition). If G is a (connected)
semisimple Lie group, then there are closed subgroups K, A, and
N , with K compact, A abelian, and N unipotent, such that the
multiplication map K×A×N → G is a surjective diffeomorphism.
Moreover, A and N are simply connected.

In the case of SLn, this is the statement that any basis can be
obtained uniquely by taking an orthonormal basis (K = SOn),
scaling by positive reals (A is the group of diagonal matrices with

positive real entries), and shearing (N is the group
(

1. . .
∗

0 1

)

). This

is exactly the result of the Gram-Schmidt process.

The upshot is that G ≃ K × A×N (topologically), and A and N
do not contribute to the fundamental group, so the fundamental
group of G is the same as that of K. In our case, K = SO2(R) is
isomorphic to a circle, so the fundamental group of SL2(R) is Z.

So the universal cover S̃L2(R) has center Z. Any finite dimensional

representation of S̃L2(R) factors through SL2(R), so none of the
covers of SL2(R) can be written as a group of finite dimensional
matrices. Representing such groups is a pain.

The most important case is the metaplectic group Mp2(R), which
is the connected double cover of SL2(R). It turns up in the theory
of modular forms of half-integral weight and has a representation
called the metaplectic representation.

Important Lie groups

Dimension 1: There are just R and S1 = R/Z.
Dimension 2: The abelian groups are quotients of R2 by some discrete

subgroup; there are three cases: R2, R2/Z = R × S1, and R2/Z2 =
S1 × S1.

There is also a non-abelian group, the group of all matrices of the
form

(
a b
0 a−1

)
, where a > 0. The Lie algebra is the subalgebra of 2 × 2

matrices of the form
(
h x
0 −h

)
, which is generated by two elements H and

X, with [H,X] = 2X.
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Dimension 3: There are some boring abelian and solvable groups,
such as R2⋉R1, or the direct sum of R1 with one of the two dimensional
groups. As the dimension increases, the number of boring solvable groups
gets huge, and nobody can do anything about them, so we ignore them
from here on.

You get the group SL2(R), which is the most important Lie group of
all. We saw earlier that SL2(R) has fundamental group Z. The double
cover Mp2(R) is important. The quotient PSL2(R) is simple, and acts
on the open upper half plane by linear fractional transformations

Closely related to SL2(R) is the compact group SU2. We know that
SU2 ≃ S3, and it covers SO3(R), with kernel ±1. After we learn about
Spin groups, we will see that SU2

∼= Spin3(R). The Lie algebra su2 is
generated by three elements X, Y , and Z with relations [X, Y ] = 2Z,
[Y, Z] = 2X, and [Z,X] = 2Y .2

The Lie algebras sl2(R) and su2 are non-isomorphic, but when you
complexify, they both become isomorphic to sl2(C).

There is another interesting 3 dimensional algebra. The Heisenberg
algebra is the Lie algebra of the Heisenberg group. It is generated by
X, Y, Z, with [X, Y ] = Z and Z central. You can think of this as strictly
upper triangular matrices.

Dimension 6: (nothing interesting happens in dimensions 4,5) We get
the group SL2(C). Later, we will see that it is also called Spin1,3(R).

Dimension 8: We have SU3(R) and SL3(R). This is the first time we
get a non-trivial root system.

Dimension 14: G2, which we will discuss a little.
Dimension 248: E8, which we will discuss in detail.

This class is mostly about finite dimensional algebras, but let’s men-
tion some infinite dimensional Lie groups or Lie algebras.

1. Automorphisms of a Hilbert space form a Lie group.

2. Diffeomorphisms of a manifold form a Lie group. There is some
physics stuff related to this.

3. Gauge groups are (continuous, smooth, analytic, or whatever) maps
from a manifold M to a group G.

4. The Virasoro algebra is generated by Ln for n ∈ Z and c, with
relations [Ln, Lm] = (n−m)Ln+m+ δn+m,0

n3−n
12

c, where c is central
(called the central charge). If you set c = 0, you get (complexified)
vector fields on S1, where we think of Ln as ieinθ ∂

∂θ
. Thus, the

2An explicit representation is given by X =
(

0 1
−1 0

)
, Y = ( 0 i

i 0 ), and Z =
(

i 0
0 −i

)
.

The cross product on R3 gives it the structure of this Lie algebra.
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Virasoro algebra is a central extension

0 → cC→ Virasoro → Vect(S1) → 0.

5. Affine Kac-Moody algebras, which are more or less central exten-
sions of certain gauge groups over the circle.
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Lecture 22 - Clifford algebras

With Lie algebras of small dimensions, there are accidental isomor-
phisms. Almost all of these can be explained with Clifford algebras
and Spin groups.

Motivational examples that we’d like to explain:

1. SO2(R) = S1: S1 can double cover S1 itself.

2. SO3(R): has a simply connected double cover S3.

3. SO4(R): has a simply connected double cover S3 × S3.

4. SO5(C): Look at Sp4(C), which acts on C4 and on Λ2(C4), which
is 6 dimensional, and decomposes as 5⊕1. Λ2(C4) has a symmetric
bilinear form given by Λ2(C4)⊗Λ2(C4) → Λ4(C4) ≃ C, and Sp4(C)
preserves this form. You get that Sp4(C) acts on C5, preserving
a symmetric bilinear form, so it maps to SO5(C). You can check
that the kernel is ±1. So Sp4(C) is a double cover of SO5(C).

5. SO5(C): SL4(C) acts on C4, and we still have our 6 dimensional
Λ2(C4), with a symmetric bilinear form. So you get a homomor-
phism SL4(C) → SO6(C), which you can check is surjective, with
kernel ±1.

So we have double covers S1, S3, S3×S3, Sp4(C), SL4(C) of the orthog-
onal groups in dimensions 2,3,4,5, and 6, respectively. All of these look
completely unrelated. By the end of the next lecture, we will have an
understanding of these groups, which will be called Spin2(R), Spin3(R),
Spin4(R), Spin5(C), and Spin6(C), respectively.

Example 22.1. We have not yet defined Clifford algebras, but here are
some examples of Clifford algebras over R.

– C is generated by R, together with i, with i2 = −1

– H is generated by R, together with i, j, each squaring to −1, with
ij + ji = 0.

– Dirac wanted a square root for the operator ∇ = ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
− ∂2

∂t2

(the wave operator in 4 dimensions). He supposed that the square
root is of the form A = γ1

∂
∂x

+ γ2
∂
∂y

+ γ3
∂
∂z

+ γ4
∂
∂t

and compared

coefficients in the equation A2 = ∇. Doing this yields γ2
1 = γ2

2 =
γ2

3 = 1, γ2
4 = −1, and γiγj + γjγi = 0 for i 6= j.

Dirac solved this by taking the γi to be 4× 4 complex matrices. A
operates on vector-valued functions on space-time.
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Definition 22.2. A general Clifford algebra over R should be generated
by elements γ1, . . . , γn such that γ2

i is some given real, and γiγj+γjγi = 0
for i 6= j.

Definition 22.3 (better definition). Suppose V is a vector space over
a field K, with some quadratic form1 N : V → K. Then the Clifford
algebra CV (K) is generated by the vector space V , with relations v2 =
N(v).

We know that N(λv) = λ2N(v) and that the expression (a, b) :=
N(a+ b)−N(a)−N(b) is bilinear. If the characteristic of K is not 2, we

have N(a) = (a,a)
2

. Thus, you can work with symmetric bilinear forms
instead of quadratic forms so long as the characteristic of K is not 2.
We’ll use quadratic forms so that everything works in characteristic 2.

� Warning 22.4. A few authors (mainly in index theory) use the
relations v2 = −N(v). Some people add a factor of 2, which usually

doesn’t matter, but is wrong in characteristic 2.

Example 22.5. Take V = R2 with basis i, j, and with N(xi + yj) =
−x2 − y2. Then the relations are (xi + yj)2 = −x2 − y2 are exactly the
relations for the quaternions: i2 = j2 = −1 and (i+j)2 = i2+ij+ji+j2 =
−2, so ij + ji = 0.

Remark 22.6. If the characteristic of K is not 2, a “completing the
square” argument shows that any quadratic form is isomorphic to c1x

2
1 +

· · ·+ cnx
2
n, and if one can be obtained from another other by permuting

the ci and multiplying each ci by a non-zero square, the two forms are
isomorphic.

It follows that every quadratic form on a vector space over C is iso-
morphic to x2

1+ · · ·+x2
n, and that every quadratic form on a vector space

over R is isomorphic to x2
1 + · · ·+x2

m−x2
m+1 −· · ·−x2

m+n (m pluses and
n minuses) for some m and n. One can check that these forms over R
are non-isomorphic.

We will always assume that N is non-degenerate (i.e. that the as-
sociated bilinear form is non-degenerate), but one could study Clifford
algebras arising from degenerate forms.

� Warning 22.7. The criterion in the remark is not sufficient for clas-
sifying quadratic forms. For example, over the field F3, the forms

x2+y2 and −x2−y2 are isomorphic via the isomorphism ( 1 1
1 −1 ) : F2

3 → F2
3,

but −1 is not a square in F3. Also, completing the square doesn’t work
in characteristic 2.

1N is a quadratic form if it is a homogeneous polynomial of degree 2 in the
coefficients with respect to some basis.
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Remark 22.8. The tensor algebra TV has a natural Z-grading, and to
form the Clifford algebra CV (K), we quotient by the ideal generated by
the even elements v2−N(v). Thus, the algebra CV (K) = C0

V (K)⊕C1
V (K)

is Z/2Z-graded. A Z/2Z-graded algebra is called a superalgebra.

Problem: Find the structure of Cm,n(R), the Clifford algebra over
Rn+m with the form x2

1 + · · · + x2
m − x2

m+1 − · · · − x2
m+n.

Example 22.9.

– C0,0(R) is R.

– C1,0(R) is R[ε]/(ε2 − 1) = R(1 + ε)⊕R(1− ε) = R⊕R. Note that
the given basis, this is a direct sum of algebras over R.

– C0,1(R) is R[i]/(i2 + 1) = C, with i odd.

– C2,0(R) is R[α, β]/(α2 − 1, β2 − 1, αβ + βα). We get a homomor-
phism C2,0(R) → M2(R), given by α 7→ ( 1 0

0 −1 ) and β 7→ ( 0 1
1 0 ).

The homomorphism is onto because the two given matrices gener-
ate M2(R) as an algebra. The dimension of M2(R) is 4, and the
dimension of C2,0(R) is at most 4 because it is spanned by 1, α, β,
and αβ. So we have that C2,0(R) ≃M2(R).

– C1,1(R) is R[α, β]/(α2 − 1, β2 + 1, αβ + βα). Again, we get an
isomorphism with M2(R), given by α 7→ ( 1 0

0 −1 ) and β 7→ ( 0 1
−1 0 )

Thus, we’ve computed the Clifford algebras

m\n 0 1 2
0 R C H
1 R⊕ R M2(R)
2 M2(R)

Remark 22.10. If {v1, . . . , vn} is a basis for V , then {vi1 · · · vik |i1 < · · · <
ik, k ≤ n} spans CV (K), so the dimension of CV (K) is less than or equal
to 2dimV . The tough part of Clifford algebras is showing that it cannot
be smaller.

Now let’s try to analyze larger Clifford algebras more systematically.
What is CU⊕V in terms of CU and CV ? One might guess CU⊕V ∼= CU ⊗
CV . For the usual definition of tensor product, this is false (e.g. C1,1(R) 6=
C1,0(R) ⊗ C0,1(R)). However, for the superalgebra definition of tensor
product, this is correct. The superalgebra tensor product is the regular
tensor product of vector spaces, with the product given by (a⊗b)(c⊗d) =
(−1)deg b·deg cac⊗ bd for homogeneous elements a, b, c, and d.
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Let’s specialize to the case K = R and try to compute CU⊕V (K).
Assume for the moment that dimU = m is even. Take α1, . . . , αm to be
an orthogonal basis for U and let β1, . . . , βn to be an orthogonal basis
for V . Then set γi = α1α2 · · ·αmβi. What are the relations between the
αi and the γj? We have

αiγj = αiα1α2 · · ·αmβj = α1α2 · · ·αmβiαi = γjαi

since dimU is even, and αi anti-commutes with everything except itself.

γiγj = γiα1 · · ·αmβj = α1 · · ·αmγiβj
= α1 · · ·αmα1 · · ·αm βiβj

︸︷︷︸

−βjβi

= −γjγi

γ2
i = α1 · · ·αmα1 · · ·αmβiβi = (−1)

m(m−1)
2 α2

1 · · ·α2
mβ

2
i

= (−1)m/2α2
1 · · ·α2

mβ
2
i (m even)

So the γi’s commute with the αi and satisfy the relations of some Clifford
algebra. Thus, we’ve shown that CU⊕V (K) ∼= CU(K) ⊗ CW (K), where

W is V with the quadratic form multiplied by (−1)
1
2

dimUα2
1 · · ·α2

m =

(−1)
1
2

dimU · discriminant(U), and this is the usual tensor product of al-
gebras over R.

Taking dimU = 2, we find that

Cm+2,n(R) ∼= M2(R) ⊗ Cn,m(R)

Cm+1,n+1(R) ∼= M2(R) ⊗ Cm,n(R)

Cm,n+2(R) ∼= H⊗ Cn,m(R)

where the indices switch whenever the discriminant is positive. Using
these formulas, we can reduce any Clifford algebra to tensor products of
things like R, C, H, and M2(R).

Recall the rules for taking tensor products of matrix algebras (all
tensor products are over R).

– R⊗X ∼= X.

– C⊗H ∼= M2(C).

This follows from the isomorphism C⊗ Cm,n(R) ∼= Cm+n(C).

– C⊗ C ∼= C⊕ C.

– H⊗H ∼= M4(R).

You can see by thinking of the action on H ∼= R4 given by (x⊗ y) ·
z = xzy−1.
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– Mm

(
Mn(X)

) ∼= Mmn(X).

– Mm(X) ⊗Mn(Y ) ∼= Mmn(X ⊗ Y ).

Filling in the middle of the table is easy because you can move di-
agonally by tensoring with M2(R). It is easy to see that C8+m,n(R) ∼=
Cm,n+8(R) ∼= Cm,n⊗M16(R), which gives the table a kind of mod 8 peri-
odicity. There is a more precise way to state this: Cm,n(R) and Cm′,n′(R)
are super Morita equivalent if and only if m− n ≡ m′ − n′ mod 8.
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Lecture 23

Last time we defined the Clifford algebra CV (K), where V is a vector
space over K with a quadratic form N . CV (K) is generated by V with
x2 = N(x). Cm,n(R) uses the form x2

1 + · · · + x2
m − x2

m+1 − · · · − x2
m+n.

We found that the structure depends heavily on m− n mod 8.

Remark 23.1. This mod 8 periodicity turns up in several other places:

1. Real Clifford algebras Cm,n(R) and Cm′,n′(R) are super Morita
equivalent if and only if m− n ≡ m′ − n′ mod 8.

2. Bott periodicity, which says that stable homotopy groups of orthog-
onal groups are periodic mod 8.

3. Real K-theory is periodic with a period of 8.

4. Even unimodular lattices (such as the E8 lattice) exist in Rm,n if
and only if m− n ≡ 0 mod 8.

5. The Super Brauer group of R is Z/8Z. The Super Brauer group
consists of super division algebras over R (algebras in which every
non-zero homogeneous element is invertible) with the operation of
tensor product modulo super Morita equivalence.1

R •

R[ε+]
•

C[ε+]
• H[ε−]•

H•

H[ε+]
•

C[ε−]
•R[ε−]

•

where ε± are odd with ε2
± = ±1, and i ∈ C is odd,2 but i, j, k ∈ H

are even.

Recall that CV (R) = C0
V (R) ⊕ C1

V (R), where C1
V (R) is the odd part

and C0
V (R) is the even part. It turns out that we will need to know the

structure of C0
m,n(R). Fortunately, this is easy to compute in terms of

smaller Clifford algebras. Let dimU = 1, with γ a basis for U and let

1See http://math.ucr.edu/home/baez/trimble/superdivision.html
2One could make i even since R[i, ε±] = R[∓ε±i, ε±], and R[∓ε±i] ∼= C is entirely

even.

http://math.ucr.edu/home/baez/trimble/superdivision.html
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γ1, . . . , γn an orthogonal basis for V . Then C0
U⊕V (K) is generated by

γγ1, . . . , γγn. We compute the relations

γγi · γγj = −γγj · γγi

for i 6= j, and
(γγi)

2 = (−γ2)γ2
i

So C0
U⊕V (K) is itself the Clifford algebra CW (K), where W is V with

the quadratic form multiplied by −γ2 = −disc(U). Over R, this tells us
that

C0
m+1,n(R) ∼= Cn,m(R) (mind the indices)

C0
m,n+1(R) ∼= Cm,n(R).

Remark 23.2. For complex Clifford algebras, the situation is similar, but
easier. One finds that C2m(C) ∼= M2m(C) and C2m+1(C) ∼= M2m(C) ⊕
M2m(C), with C0

n(C) ∼= Cn−1(C). You could figure these out by tensoring
the real algebras with C if you wanted. We see a mod 2 periodicity now.
Bott periodicity for the unitary group is mod 2.

Clifford groups, Spin groups, and Pin groups

In this section, we define Clifford groups, denoted ΓV (K), and find an
exact sequence

1 → K× central−−−→ ΓV (K) → OV (K) → 1.

Definition 23.3. ΓV (K) = {x ∈ CV (K) homogeneous3|xV α(x)−1 ⊆
V } (recall that V ⊆ CV (K)), where α is the automorphism of CV (K)
induced by −1 on V (i.e. the automorphism which acts by −1 on odd
elements and 1 on even elements).

Note that ΓV (K) acts on V by x · v = xvα(x)−1.
Many books leave out the α, which is a mistake, though not a serious

one. They use xV x−1 instead of xV α(x)−1. Our definition is better for
the following reasons:

1. It is the correct superalgebra sign. The superalgebra convention
says that whenever you exchange two elements of odd degree, you
pick up a minus sign, and V is odd.

3We assume that ΓV (K) consists of homogeneous elements, but this can actually
be proven.
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2. Putting α in makes the theory much cleaner in odd dimensions.
For example, we will see that the described action gives a map
ΓV (K) → OV (K) which is onto if we use α, but not if we do not.
(You get SOV (K) without the α, which isn’t too bad, but is still
annoying.)

Lemma 23.4.4 The elements of ΓV (K) which act trivially on V are the
elements of K× ⊆ ΓV (K) ⊆ CV (K).

Proof. Suppose a0 + a1 ∈ ΓV (K) acts trivially on V , with a0 even and
a1 odd. Then (a0 + a1)v = vα(a0 + a1) = v(a0 − a1). Matching up even
and odd parts, we get a0v = va0 and a1v = −va1. Choose an orthogonal
basis γ1, . . . , γn for V .5 We may write

a0 = x+ γ1y

where x ∈ C0
V (K) and y ∈ C1

V (K) and neither x nor y contain a factor
of γ1, so γ1x = xγ1 and γ1y = yγ1. Applying the relation a0v = va0 with
v = γ1, we see that y = 0, so a0 contains no monomials with a factor γ1.

Repeat this procedure with v equal to the other basis elements to
show that a0 ∈ K× (since it cannot have any γ’s in it). Similarly, write
a1 = y + γ1x, with x and y not containing a factor of γ1. Then the
relation a1γ1 = −γ1a1 implies that x = 0. Repeating with the other
basis vectors, we conclude that a1 = 0.

So a0 + a1 = a0 ∈ K ∩ ΓV (K) = K×.

Now we define −T to be the identity on V , and extend it to an anti-
automorphism of CV (K) (“anti” means that (ab)T = bTaT ). Do not
confuse a 7→ α(a) (automorphism), a 7→ aT (anti-automorphism), and
a 7→ α(aT ) (anti-automorphism).

Notice that on V , N coincides with the quadratic form N . Many au-
thors seem not to have noticed this, and use different letters. Sometimes
they use a sign convention which makes them different.

Now we define the spinor norm of a ∈ CV (K) by N(a) = aaT . We
also define a twisted version: Nα(a) = aα(a)T .

Proposition 23.5.

1. The restriction of N to ΓV (K) is a homomorphism whose image
lies in K×. N is a mess on the rest of CV (K).

2. The action of ΓV (K) on V is orthogonal. That is, we have a ho-
momorphism ΓV (K) → OV (K).

4I promised no Lemmas or Theorems, but I was lying to you.
5All these results are true in characteristic 2, but you have to work harder ... you

can’t go around choosing orthogonal bases because they may not exist.
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Proof. First we show that if a ∈ ΓV (K), then Nα(a) acts trivially on V .

Nα(a) v α
(
Nα(a)

)−1
= aα(a)Tv

(

α(a)α
(
α(a)T

)

︸ ︷︷ ︸
=aT

)−1

= aα(a)Tv(a−1)T
︸ ︷︷ ︸
=(a−1vTα(a))T

α(a)−1

= aa−1vα(a)α(a)−1 (T |V = IdV and a−1vα(a) ∈ V )

= v

So by Lemma 23.4, Nα(a) ∈ K×. This implies that Nα is a homomor-
phism on ΓV (K) because

Nα(a)Nα(b) = aα(a)TNα(b)

= aNα(b)α(a)T (Nα(b) is central)

= abα(b)Tα(a)T

= (ab)α(ab)T = Nα(ab).

After all this work with Nα, what we’re really interested is N . On the
even elements of ΓV (K), N agrees with Nα, and on the odd elements,
N = −Nα. Since ΓV (K) consists of homogeneous elements, N is also a
homomorphism from ΓV (K) to K×. This proves the first statement of
the Proposition.

Finally, since N is a homomorphism on ΓV (K), the action on V
preserves the quadratic form N |V . Thus, we have a homomorphism
ΓV (K) → OV (K).

Now let’s analyze the homomorphism ΓV (K) → OV (K). Lemma 23.4
says exactly that the kernel is K×. Next we will show that the image is
all of OV (K). Say r ∈ V and N(r) 6= 0.

rvα(r)−1 = −rv r

N(r)
= v − vr2 + rvr

N(r)

= v − (v, r)

N(r)
r (23.6)

=

{

−r if v = r

v if (v, r) = 0
(23.7)

Thus, r is in ΓV (K), and it acts on V by reflection through the hyper-
plane r⊥. One might deduce that the homomorphism ΓV (K) → OV (K)
is surjective because OV (K) is generated by reflections. This is wrong;
OV (K) is not always generated by reflections!
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◮ Exercise 23.1. Let H = F2
2, with the quadratic form x2 + y2 + xy,

and let V = H ⊕H . Prove that OV (F2) is not generated by reflections.

Remark 23.8. It turns out that this is the only counterexample. For
any other vector space and/or any other non-degenerate quadratic form,
OV (K) is generated by reflections. The map ΓV (K) → OV (K) is surjec-
tive even in the example above. Also, in every case except the example
above, ΓV (K) is generated as a group by non-zero elements of V (i.e.
every element of ΓV (K) is a monomial).

Remark 23.9. Equation 23.6 is the definition of the reflection of v through
r. It is only possible to reflect through vectors of non-zero norm. Reflec-
tions in characteristic 2 are strange; strange enough that people don’t
call them reflections, they call them transvections.

Thus, we have the diagram

1 // K× //

‖

ΓV (K)

N

��

// OV (K) //

N
��

1

1 // ±1 // K× x 7→x2
// K× // K×/(K×)2 // 1

(23.10)

where the rows are exact, K× is in the center of ΓV (K) (this is obvious,
since K× is in the center of CV (K)), and N : OV (K) → K×/(K×)2 is
the unique homomorphism sending reflection through r⊥ to N(r) modulo
(K×)2.

Definition 23.11. PinV (K) = {x ∈ ΓV (K)|N(x) = 1}, and SpinV (K) =
Pin0

V (K), the even elements of PinV (K).

On K×, the spinor norm is given by x 7→ x2, so the elements of spinor
norm 1 are = ±1. By restricting the top row of (23.10) to elements of
norm 1 and even elements of norm 1, respectively, we get exact sequences

1 // ±1 // PinV (K) // OV (K) N // K×/(K×)2

1 // ±1 // SpinV (K) // SOV (K)
N // K×/(K×)2

To see exactness of the top sequence, note that the kernel of φ is K× ∩
PinV (K) = ±1, and that the image of PinV (K) in OV (K) is exactly the
elements of norm 1. The bottom sequence is similar, except that the
image of SpinV (K) is not all of OV (K), it is only SOV (K); by Remark
23.8, every element of ΓV (K) is a product of elements of V , so every
element of SpinV (K) is a product of an even number of elements of V .
Thus, its image is a product of an even number of reflections, so it is in
SOV (K).
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?????????????????????????????????????????????????????????????
These maps are NOT always onto, but there are many important

cases when they are, like when V has a positive definite quadratic form.
The image is the set of elements of OV (K) or SOV (K) which have spinor
norm 1 in K×/(K×)2.

What is N : OV (K) → K×/(K×)2? It is the UNIQUE homomor-
phism such that N(a) = N(r) if a is reflection in r⊥, and r is a vector
of norm N(r).

Example 23.12. Take V to be a positive definite vector space over R.
Then N maps to 1 in R×/(R×)2 = ±1 (because N is positive definite).
So the spinor norm on OV (R) is TRIVIAL.

So if V is positive definite, we get double covers

1 → ±1 → PinV (R) → OV (R) → 1

1 → ±1 → SpinV (R) → SOV (R) → 1

This will account for the weird double covers we saw before.
What if V is negative definite. Every reflection now has image −1

in R×/(R×)2, so the spinor norm N is the same as the determinant map
OV (R) → ±1.

So in order to find interesting examples of the spinor norm, you have
to look at cases that are neither positive definite nor negative definite.

Let’s look at Losrentz space: R1,3.

�����������������

?????????????????

norm>0

norm<0

norm=0uu

Reflection through a vector of norm < 0 (spacelike vector, P : parity
reversal) has spinor norm −1, det −1 and reflection through a vector of
norm > 0 (timelike vector, T : time reversal) has spinor norm +1, det
−1. So O1,3(R) has 4 components (it is not hard to check that these are
all the components), usually called 1, P , T , and PT .

Remark 23.13. For those who know Galois cohomology. We get an exact
sequence of algebraic groups

1 → GL1 → ΓV → OV → 1

(algebraic group means you don’t put a field). You do not necessarily
get an exact sequence when you put in a field.
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If
1 → A→ B → C → 1

is exact,
1 → A(K) → B(K) → C(K)

is exact. What you really get is

1 → H0(Gal(K̄/K), A) → H0(Gal(K̄/K), B) → H0(Gal(K̄/K), C) →
→ H1(Gal(K̄/K), A) → · · ·

It turns out thatH1(Gal(K̄/K), GL1) = 1. However, H1(Gal(K̄/K),±1) =
K×/(K×)2.

So from
1 → GL1 → ΓV → OV → 1

you get

1 → K× → ΓV (K) → OV (K) → 1 = H1(Gal(K̄/K), GL1)

However, taking
1 → µ2 → SpinV → SOV → 1

you get

1 → ±1 → SpinV (K) → SOV (K)
N−→ K×/(K×)2 = H1(K̄/K, µ2)

so the non-surjectivity of N is some kind of higher Galois cohomology.

� Warning 23.14. SpinV → SOV is onto as a map of ALGEBRAIC
GROUPS, but SpinV (K) → SOV (K) need NOT be onto.

Example 23.15. Take O3(R) ∼= SO3(R)× {±1} as 3 is odd (in general
O2n+1(R) ∼= SO2n+1(R) × {±1}). So we have a sequence

1 → ±1 → Spin3(R) → SO3(R) → 1.

Notice that Spin3(R) ⊆ C0
3 (R) ∼= H, so Spin3(R) ⊆ H×, and in fact we

saw that it is S3.
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Lecture 24

Last time we constructed the sequences

1 → K× → ΓV (K) → OV (K) → 1

1 → ±1 → PinV (K) → OV (K)
N−→ K×/(K×)2

1 → ±1 → SpinV (K) → SOV (K)
N−→ K×/(K×)2

Spin representations of Spin and Pin groups

Notice that PinV (K) ⊆ CV (K)×, so any module over CV (K) gives a
representation of PinV (K). We already figured out that CV (K) are direct
sums of matrix algebras over R,C, and H.

What are the representations (modules) of complex Clifford alge-
bras? Recall that C2n(C) ∼= M2n(C), which has a representations of
dimension 2n, which is called the spin representation of PinV (K) and
C2n+1(C) ∼= M2n(C) ×M2n(C), which has 2 representations, called the
spin representations of Pin2n+1(K).

What happens if we restrict these to SpinV (C) ⊆ PinV (C)? To
do that, we have to recall that C0

2n(C) ∼= M2n−1(C) × M2n−1(C) and
C0

2n+1(C) ∼= M2n(C). So in EVEN dimensions Pin2n(C) has 1 spin rep-
resentation of dimension 2n splitting into 2 HALF SPIN representations
of dimension 2n−1 and in ODD dimensions, Pin2n+1(C) has 2 spin rep-
resentations of dimension 2n which become the same on restriction to
SpinV (C).

Now we’ll give a second description of spin representations. We’ll
just do the even dimensional case (odd is similar). Say dimV = 2n,
and say we’re over C. Choose an orthonormal basis γ1, . . . , γ2n for V , so
that γ2

i = 1 and γiγj = −γjγi. Now look at the group G generated by
γ1, . . . , γ2n, which is finite, with order 21+2n (you can write all its elements
explicitly). You can see that representations of CV (C) correspond to
representations of G, with −1 acting as −1 (as opposed to acting as 1).
So another way to look at representations of the Clifford algebra, you
can look at representations of G.

Let’s look at the structure of G:

(1) The center is ±1. This uses the fact that we are in even dimensions,
lest γ1 · · · γ2n also be central.

(2) The conjugacy classes: 2 of size 1 (1 and −1), 22n − 1 of size 2
(±γi1 · · · γin), so we have a total of 22n + 1 conjugacy classes, so
we should have that many representations. G/center is abelian,
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isomorphic to (Z/2Z)2n, which gives us 22n representations of di-
mension 1, so there is only one more left to find! We can figure
out its dimension by recalling that the sum of the squares of the
dimensions of irreducible representations gives us the order of G,
which is 22n+1. So 22n × 11 + 1 × d2 = 22n+1, where d is the di-
mension of the mystery representation. Thus, d = ±2n, so d = 2n.
Thus, G, and therefore CV (C), has an irreducible representation of
dimension 2n (as we found earlier in another way).

Example 24.1. Consider O2,1(R). As before, O2,1(R) ∼= SO2,1(R) ×
(±1), and SO2,1(R) is not connected: it has two components, separated
by the spinor norm N . We have maps

1 → ±1 → Spin2,1(R) → SO2,1(R)
N−→ ±1.

Spin2,1(R) ⊆ C∗
2,1(R) ∼= M2(R), so Spin2,1(R) has one 2 dimensional spin

representation. So there is a map Spin2,1(R) → SL2(R); by counting
dimensions and such, you can show it is an isomorphism. So Spin2,1(R) ∼=
SL2(R).

Now let’s look at some 4 dimensional orthogonal groups

Example 24.2. Look at SO4(R), which is compact. It has a complex
spin representation of dimension 24/2 = 4, which splits into two half spin
representations of dimension 2. We have the sequence

1 → ±1 → Spin4(R) → SO4(R) → 1 (N = 1)

Spin4(R) is also compact, so the image in any complex representation
is contained in some unitary group. So we get two maps Spin4(R) →
SU(2) × SU(2), and both sides have dimension 6 and centers of order
4. Thus, we find that Spin4(R) ∼= SU(2)× SU(2) ∼= S3 × S3, which give
you the two half spin representations.

So now we’ve done the positive definite case.

Example 24.3. Look at SO3,1(R). Notice that O3,1(R) has four com-
ponents distinguished by the maps det, N → ±1. So we get

1 → ±1 → Spin3,1(R) → SO3,1(R)
N−→ ±1 → 1

We expect 2 half spin representations, which give us two homomorphisms
Spin3,1(R) → SL2(C). This time, each of these homomorphisms is an
isomorphism (I can’t think of why right now). The SL2(C)s are double
covers of simple groups. Here, we don’t get the splitting into a product as
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in the positive definite case. This isomorphism is heavily used in quan-
tum field theory because Spin3,1(R) is a double cover of the connected
component of the Lorentz group (and SL2(C) is easy to work with). Note
also that the center of Spin3,1(R) has order 2, not 4, as for Spin4,0(R).
Also note that the group PSL2(C) acts on the compactified C∪{∞} by
( a bc d ) (τ) = aτ+b

cτ+d
. Subgroups of this group are called KLEINIAN groups.

On the other hand, the group SO3,1(R)+ (identity component) acts on
H3 (three dimensional hyperbolic space). To see this, look at

��
��

��

���

??
??

??

???

norm=−1oo

norm=0uu

norm=−1uu

norm=1uu

One sheet of norm −1 hyperboloid is isomorphic to H3 under the in-
duced metric. In fact, we’ll define hyperbolic space that way. If you’re
a topologist, you’re very interested in hyperbolic 3-manifolds, which are
H3/(discrete subgroup of SO3,1(R)). If you use the fact that SO3,1(R) ∼=
PSL2(R), then you see that these discrete subgroups are in fact Klienian
groups.

There are lots of exceptional isomorphisms in small dimension, all of
which are very interesting, and almost all of them can be explained by
spin groups.

Example 24.4. O2,2(R) has 4 components (given by det, N); C0
2,2(R) ∼=

M2(R)×M2(R), which induces an isomorphism Spin2,2(R) → SL2(R)×
SL2(R), which give you the two half spin representations. Both sides
have dimension 6 with centers of order 4. So this time we get two
non-compact groups. Let’s look at the fundamental group of SL2(R),
which is Z, so the fundamental group of Spin2,2(R) is Z ⊕ Z. As we re-
call, Spin4,0(R) and Spin3,1(R) were both simply connected. This shows
that SPIN GROUPS NEED NOT BE SIMPLY CONNECTED. So we
can take covers of it. What do the corresponding covers (e.g. the uni-
versal cover) of Spin2,2(R) look like? This is hard to describe because
for FINITE dimensional complex representations, you get finite dimen-
sional representations of the Lie algebra L, which correspond to the
finite dimensional representations of L ⊗ C, which correspond to the fi-
nite dimensional representations of L′ = Lie algebra of Spin4,0(R), which
correspond to the finite dimensional representations of Spin4,0(R), which



Lecture 24 142

has no covers because it is simply connected. This means that any fi-
nite dimensional representation of a cover of Spin2,2(R) actually factors
through Spin2,2(R). So there is no way you can talk about these things
with finite matrices, and infinite dimensional representations are hard.

To summarize, the ALGEBRAIC GROUP Spin2,2 is simply con-
nected (as an algebraic group) (think of an algebraic group as a functor
from rings to groups), which means that it has no algebraic central exten-
sions. However, the LIE GROUP Spin2,2(R) is NOT simply connected;
it has fundamental group Z ⊕ Z. This problem does not happen for
COMPACT Lie groups (where every finite cover is algebraic).

We’ve done O4,0, O3,1, and O2,2, from which we can obviously get
O1,3 and O0,4. Note that O4,0(R) ∼= O0,4(R), SO4,0(R) ∼= SO0,4(R),
Spin4,0(R) ∼= Spin0,4(R). However, Pin4,0(R) 6∼= Pin0,4(R). These two are
hard to distinguish. We have

Pin4,0(R)

��

Pin0,4(R)

��

O4,0(R) = O0,4(R)

Take a reflection (of order 2) in O4,0(R), and lift it to the Pin groups.
What is the order of the lift? The reflection vector v, with v2 = ±1 lifts
to the element v ∈ ΓV (R) ⊆ C∗

V (R). Notice that v2 = 1 in the case of
R4,0 and v2 = −1 in the case of R0,4, so in Pin4,0(R), the reflection lifts
to something of order 2, but in Pin0,4(R), you get an element of order 4!.
So these two groups are different.

Two groups are isoclinic if they are confusingly similar. A similar
phenomenon is common for groups of the form 2 ·G · 2, which means it
has a center of order 2, then some group G, and the abelianization has
order 2. Watch out.

◮ Exercise 24.1. Spin3,3(R) ∼= SL4(R).

Triality

This is a special property of 8 dimensional orthogonal groups. Recall
that O8(C) has the Dynkin diagram D4, which has a symmetry of order
three:

��	�
��

��	�
��
��	�
��

��	�
��11
11

11
��

00

ZZ
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But O8(C) and SO8(C) do NOT have corresponding symmetries of
order three. The thing that does have the symmetry of order three is
the spin group! The group Spin8(R) DOES have “extra” order three
symmetry. You can see it as follows. Look at the half spin representa-
tions of Spin8(R). Since this is a spin group in even dimension, there
are two. C8,0(R) ∼= M28/2−1(R) × M28/2−1(R) ∼= M8(R) × M8(R). So
Spin8(R) has two 8 dimensional real half spin representations. But the
spin group is compact, so it preserves some quadratic form, so you get
2 homomorphisms Spin8(R) → SO8(R). So Spin8(R) has THREE 8 di-
mensional representations: the half spins, and the one from the map
to SO8(R). These maps Spin8(R) → SO8(R) lift to Triality automor-
phisms Spin8(R) → Spin8(R). The center of Spin8(R) is (Z/2) + (Z/2)
because the center of the Clifford group is ±1,±γ1 · · · γ8. There are 3
non-trivial elements of the center, and quotienting by any of these gives
you something isomorphic to SO8(R). This is special to 8 dimensions.

More about Orthogonal groups

Is OV (K) a simple group? NO, for the following reasons:

(1) There is a determinant map OV (K) → ±1, which is usually onto,
so it can’t be simple.

(2) There is a spinor norm map OV (K) → K×/(K×)2

(3) −1 ∈ center of OV (K).

(4) SOV (K) tends to split if dimV = 4, abelian if dimV = 2, and
trivial if dimV = 1.

It turns out that they are usually simple apart from these four reasons
why they’re not. Let’s mod out by the determinant, to get to SO,
then look at SpinV (K), then quotient by the center, and assume that
dimV ≥ 5. Then this is usually simple. The center tends to have order
1,2, or 4. If K is a FINITE field, then this gives many finite simple
groups.

Note that SOV (K) is NOT a subgroup of OV (K), elements of deter-
minant 1 in general, it is the image of Γ0

V (K) ⊆ ΓV (K) → OV (K), which
is the correct definition. Let’s look at why this is right and the definition
you know is wrong. There is a homomorphism ΓV (K) → Z/2Z, which
takes Γ0

V (K) to 0 and Γ1
V (K) to 1 (called the DICKSON INVARIANT).

It is easy to check that det(v) = (−1)dickson invariant(v). So if the char-
acteristic of K is not 2, det = 1 is equivalent to dickson = 0, but in
characteristic 2, determinant is the wrong invariant (because determi-
nant is always 1).
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Special properties of O1,n(R) and O2,n(R). O1,n(R) acts on hyperbolic
space Hn, which is a component of norm −1 vectors in Rn,1. O2,n(R) acts
on the “Hermitian symmetric space” (Hermitian means it has a complex
structure, and symmetric means really nice). There are three ways to
construct this space:

(1) It is the set of positive definite 2 dimensional subspaces of R2,n

(2) It is the norm 0 vectors ω of PC2,n with (ω, ω̄) = 0.

(3) It is the vectors x + iy ∈ R1,n−1 with y ∈ C, where the cone C is
the interior of the norm 0 cone.

◮ Exercise 24.2. Show that these are the same.

Next week, we’ll mess around with E8.
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Lecture 25 - E8

In this lecture we use a vector notation in which powers represent repeti-
tions: so (18) = (1, 1, 1, 1, 1, 1, 1, 1) and (±1

2

2
, 06) = (±1

2
,±1

2
, 0, 0, 0, 0, 0, 0).

Recall that E8 has the Dynkin diagram

e1 − e2
��	�
�� e2 − e3��	�
��

e3 − e4
��	�
�� e4 − e5��	�
��

e5 − e6
��	�
��

(−1
2

5
, 1

2

3
)��	�
��

e6 − e7��	�
��
e7 − e8

��	�
��

where each vertex is a root r with (r, r) = 2; (r, s) = 0 when r and s
are not joined, and (r, s) = −1 when r and s are joined. We choose an
orthonormal basis e1, . . . , e8, in which the roots are as given.

We want to figure out what the root lattice L of E8 is (this is the
lattice generated by the roots). If you take {ei−ei+1}∪(−15, 13) (all the
A7 vectors plus twice the strange vector), they generate the D8 lattice
= {(x1, . . . , x8)|xi ∈ Z,

∑
xi even}. So the E8 lattice consists of two

cosets of this lattice, where the other coset is {(x1, . . . , x8)|xi ∈ Z +
1
2
,
∑
xi odd}.

Alternative version: If you reflect this lattice through the hyperplane
e⊥1 , then you get the same thing except that

∑
xi is always even. We will

freely use both characterizations, depending on which is more convenient
for the calculation at hand.

We should also work out the weight lattice, which is the vectors s
such that (r, r)/2 divides (r, s) for all roots r. Notice that the weight
lattice of E8 is contained in the weight lattice of D8, which is the union of
four cosets of D8: D8, D8 +(1, 07), D8 +(1

2

8
) and D8 +(−1

2
, 1

2

7
). Which

of these have integral inner product with the vector (−1
2

5
, 1

2

3
)? They are

the first and the last, so the weight lattice of E8 is D8 ∪D8 + (−1
2
, 1

2

7
),

which is equal to the root lattice of E8.
In other words, the E8 lattice L is UNIMODULAR (equal to its dual

L′), where the dual is the lattice of vectors having integral inner product
with all lattice vectors. This is also true of G2 and F4, but is not in
general true of Lie algebra lattices.

The E8 lattice is EVEN, which means that the inner product of any
vector with itself is always even.

Even unimodular lattices in Rn only exist if 8|n (this 8 is the same
8 that shows up in the periodicity of Clifford groups). The E8 lattice is
the only example in dimension equal to 8 (up to isomorphism, of course).
There are two in dimension 16 (one of which is L⊕L, the other is D16∪
some coset). There are 24 in dimension 24, which are the Niemeier
lattices. In 32 dimensions, there are more than a billion!
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The Weyl group of E8 is generated by the reflections through s⊥

where s ∈ L and (s, s) = 2 (these are called roots). First, let’s find all
the roots: (x1, . . . , x8) such that

∑
x2
i = 2 with xi ∈ Z or Z + 1

2
and

∑
xi even. If xi ∈ Z, obviously the only solutions are permutations of

(±1,±1, 06), of which there are
(
8
2

)
× 22 = 112 choices. In the Z + 1

2

case, you can choose the first 7 places to be ±1
2
, and the last coordinate

is forced, so there are 27 choices. Thus, you get 240 roots.
Let’s find the orbits of the roots under the action of the Weyl group.

We don’t yet know what the Weyl group looks like, but we can find
a large subgroup that is easy to work with. Let’s use the Weyl group
of D8, which consists of the following: we can apply all permutations
of the coordinates, or we can change the sign of an even number of
coordinates (e.g., reflection in (1,−1, 06) swaps the first two coordinates,
and reflection in (1, −1, 06) followed by reflection in (1, 1, 06) changes
the sign of the first two coordinates.)

Notice that under the Weyl group of D8, the roots form two orbits:
the set which is all permutations of (±12, 06), and the set (±1

2

8
). Do

these become the same orbit under the Weyl group of E8? Yes; to show
this, we just need one element of the Weyl group of E8 taking some
element of the first orbit to the second orbit. Take reflection in (1

2

8
)⊥

and apply it to (12, 06): you get (1
2

2
,−1

2

6
), which is in the second orbit.

So there is just one orbit of roots under the Weyl group.
What do orbits of W (E8) on other vectors look like? We’re interested

in this because we might want to do representation theory. The character
of a representation is a map from weights to integers, which is W (E8)-
invariant. Let’s look at vectors of norm 4 for example. So

∑
x2
i = 4,

∑
xi even, and xi ∈ Z or xi ∈ Z + 1

2
. There are 8 × 2 possibilities

which are permutations of (±2, 07). There are
(
8
4

)
× 24 permutations of

(±14, 04), and there are 8 × 27 permutations of (±3
2
,±1

2

7
). So there are

a total of 240× 9 of these vectors. There are 3 orbits under W (D8), and
as before, they are all one orbit under the action of W (E8). Just reflect

(2, 07) and (13,−1, 04) through (1
2

8
).

◮ Exercise 25.1. Show that the number of norm 6 vectors is 240× 28,
and they form one orbit

(If you’ve seen a course on modular forms, you’ll know that the num-
ber of vectors of norm 2n is given by 240×

∑

d|n d
3. If you let call these

cn, then
∑
cnq

n is a modular form of level 1 (E8 even, unimodular),
weight 4 (dimE8/2).)

For norm 8 there are two orbits, because you have vectors that are
twice a norm 2 vector, and vectors that aren’t. As the norm gets bigger,
you’ll get a large number of orbits.
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What is the order of the Weyl group of E8? We’ll do this by 4 different
methods, which illustrate the different techniques for this kind of thing:

(1) This is a good one as a mnemonic. The order of E8 is given by

|W (E8)| = 8! ×
∏
(

numbers on the

affine E8 diagram1

)

× Weight lattice of E8

Root lattice of E8

= 8!×
(

1
��	�
��

2
��	�
��

3
��	�
��

4
��	�
��

5
��	�
��

6
��	�
��3 ��	�
��

4
��	�
��

2
��	�
��
)

× 1

= 214 × 35 × 52 × 7

We can do the same thing for any other Lie algebra, for example,

|W (F4)| = 4! × (
1��	�
�� 2��	�
�� 3��	�
�� 4��	�
��// 2��	�
�� ) × 1

= 27 × 32

(2) The order of a reflection group is equal to the products of degrees
of the fundamental invariants. For E8, the fundamental invariants
are of degrees 2,8,12,14,18,20,24,30 (primes +1).

(3) This one is actually an honest method (without quoting weird
facts). The only fact we will use is the following: suppose G acts
transitively on a set X with H = the group fixing some point; then
|G| = |H| · |X|.
This is a general purpose method for working out the orders of
groups. First, we need a set acted on by the Weyl group of E8.
Let’s take the root vectors (vectors of norm 2). This set has 240
elements, and the Weyl group of E8 acts transitively on it. So
|W (E8)| = 240 × |subgroup fixing (1,−1, 06)|. But what is the
order of this subgroup (call it G1)? Let’s find a set acted on by
this group. It acts on the set of norm 2 vectors, but the action
is NOT transitive. What are the orbits? G1 fixes s = (1,−1, 06).
For other roots r, G1 obviously fixes (r, s). So how many roots are
there with a given inner product with s?

(s, r) number choices
2 1 s

1 56 (1, 0,±16), (0,−1,±16), (1
2
,−1

2
, 1

2

6
)

0 126
−1 56
−2 1 −s

1These are the numbers giving highest root.
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So there are at least 5 orbits under G1. In fact, each of these sets
is a single orbit under G1. How can we see this? Find a large
subgroup of G1. Take W (D6), which is all permutations of the last
6 coordinates and all even sign changes of the last 6 coordinates.
It is generated by reflections associated to the roots orthogonal to
e1 and e2 (those that start with two 0s). The three cases with
inner product 1 are three orbits under W (D6). To see that there
is a single orbit under G1, we just need some reflections that mess
up these orbits. If you take a vector (1

2
, 1

2
,±1

2

6
) and reflect norm

2 vectors through it, you will get exactly 5 orbits. So G1 acts
transitively on these orbits.

We’ll use the orbit of vectors r with (r, s) = −1. Let G2 be the
vectors fixing s and r: s��	�
�� r��	�
�� We have that |G1| = |G2| · 56.

Keep going ... it gets tedious, but here are the answers up to the
last step:

Our plan is to chose vectors acted on by Gi, fixed by Gi+1 which
give us the Dynkin diagram of E8. So the next step is to try to

find vectors t that give us the picture s��	�
�� r��	�
�� t��	�
�� , i.e, they have
inner product −1 with r and 0 with s. The possibilities for t are
(−1,−1, 0, 05) (one of these), (0, 0, 1,±1, 04) and permutations of

its last five coordinates (10 of these), and (−1
2
,−1

2
, 1

2
,±1

2

5
) (there

are 16 of these), so we get 27 total. Then we could check that they
form one orbit, which is boring.

Next find vectors which go next to t in our picture:
s��	�
�� r��	�
�� t��	�
�� ��	�
�� , i.e., whose inner product is −1 with t and
zero with r, s. The possibilities are permutations of the last four
coords of (0, 0, 0, 1,±1, 03) (8 of these) and (−1

2
,−1

2
,−1

2
, 1

2
,±1

2

4
) (8

of these), so there are 16 total. Again check transitivity.

Find a fifth vector; the possibilities are (04, 1,±1, 02) and perms of

the last three coords (6 of these), and (−1
2

4
, 1

2
,±1

2

3
) (4 of these) for

a total of 10.

For the sixth vector, we can have (05, 1,±1, 0) or (05, 1, 0,±1) (4

possibilites) or (−1
2

5
, 1

2
,±1

2

2
) (2 possibilities), so we get 6 total.

NEXT CASE IS TRICKY: finding the seventh one, the possibilities
are (06, 1,±1) (2 of these) and ((−1

2
)6, 1

2
, 1

2
) (just 1). The proof

of transitivity fails at this point. The group we’re using by now
doesn’t even act transitively on the pair (you can’t get between
them by changing an even number of signs). What elements of

W (E8) fix all of these first 6 points
s��	�
�� r��	�
�� t��	�
�� ��	�
�� ��	�
�� ��	�
��

? We want to find roots perpendicular to all of these vectors, and
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the only possibility is ((1
2
)8). How does reflection in this root act

on the three vectors above? (06, 12) 7→ ((−1
2
)6, 1

2

2
) and (06, 1,−1)

maps to itself. Is this last vector in the same orbit? In fact they
are in different orbits. To see this, look for vectors

s��	�
�� r��	�
�� t��	�
�� ��	�
�� ��	�
��

?��	�
��

��	�
�� (06, 1,±1)��	�
��

completing the E8 diagram. In the (06, 1, 1) case, you can take the
vector ((−1

2
)5, 1

2
, 1

2
,−1

2
). But in the other case, you can show that

there are no possibilities. So these really are different orbits.

Use the orbit with 2 elements, and you get

|W (E8)| = 240 × 56 ×
order of W (E6)

︷ ︸︸ ︷

27 × 16 × 10 × 6 × 2 × 1
︸ ︷︷ ︸

order of W (E7)

because the group fixing all 8 vectors must be trivial. You also get
that

|W (“E5”)| = 16 × 10 ×
|W (A2×A1)|
︷ ︸︸ ︷

6 × 2 × 1
︸ ︷︷ ︸

|W (A4)|

where “E5” is the algebra with diagram ��	�
�� ��	�
��
��	�
��

��	�
�� ��	�
�� (that is, D5).
Similarly, E4 is A4 and E3 is A2 × A1.

We got some other information. We found that the Weyl group of
E8 acts transitively on all the configurations

��	�
��
��	�
�� ��	�
��
��	�
�� ��	�
�� ��	�
��
��	�
�� ��	�
�� ��	�
�� ��	�
��
��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��
��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��

but not on
��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��

(4) We’ll slip this in to next lecture

Also, next time we’ll construct the Lie algebra E8.
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Lecture 26

Today we’ll finish looking at W (E8), then we’ll construct E8.
Remember that we still have a fourth method of finding the order of

W (E8). Let L be the E8 lattice. Look at L/2L, which has 256 elements.
Look at this as a set acted on by W (E8). There is an orbit of size 1
(represented by 0). There is an orbit of size 240/2 = 120, which are
the roots (a root is congruent mod 2L to it’s negative). Left over are
135 elements. Let’s look at norm 4 vectors. Each norm 4 vector, r,
satisfies r ≡ −r mod 2, and there are 240 · 9 of them, which is a lot,
so norm 4 vectors must be congruent to a bunch of stuff. Let’s look at
r = (2, 0, 0, 0, 0, 0, 0, 0). Notice that it is congruent to vectors of the form
(0 · · · ± 2 . . . 0), of which there are 16. It is easy to check that these are
the only norm 4 vectors congruent to r mod 2. So we can partition the
norm 4 vectors into 240 · 9/16 = 135 subsets of 16 elements. So L/2L
has 1+120+135 elements, where 1 is the zero, 120 is represented by 2
elements of norm 2, and 135 is represented by 16 elements of norm 4. A
set of 16 elements of norm 4 which are all congruent is called a FRAME.
It consists of elements ±e1, . . . ,±e8, where e2i = 4 and (ei, ej) = 1 for
i 6= j, so up to sign it is an orthogonal basis.

Then we have

|W (E8)| = (# frames) × |subgroup fixing a frame|

because we know that W (E8) acts transitively on frames. So we need
to know what the automorphisms of an orthogonal base are. A frame is
8 subsets of the form (r,−r), and isometries of a frame form the group
(Z/2Z)8 ·S8, but these are not all in the Weyl group. In the Weyl group,
we found a (Z/2Z)7 ·S8, where the first part is the group of sign changes
of an EVEN number of coordinates. So the subgroup fixing a frame must
be in between these two groups, and since these groups differ by a factor
of 2, it must be one of them. Observe that changing an odd number of
signs doesn’t preserve the E8 lattice, so it must be the group (Z/2Z)7 ·S8,
which has order 27 · 8!. So the order of the Weyl group is

135 · 27 · 8! = |27 · S8| ×
# norm 4 elements

2 × dimL

Remark 26.1. Similarly, if Λ is the Leech lattice, you actually get the
order of Conway’s group to be

|212 ·M24| ·
# norm 8 elements

2 × dim Λ

where M24 is the Mathieu group (one of the sporadic simple groups).
The Leech lattice seems very much to be trying to be the root lattice of
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the monster group, or something like that. There are a lot of analogies,
but nobody can make sense of it.

W (E8) acts on (Z/2Z)8, which is a vector space over F2, with quadratic

form N(a) = (a,a)
2

mod 2, so you get a map

±1 →W (E8) → O+
8 (F2)

which has kernel ±1 and is surjective. O+
8 is one of the 8 dimensional

orthogonal groups over F2. So the Weyl group is very close to being an
orthogonal group of a vector space over F2.

What is inside the root lattice/Lie algebra/Lie group E8? One obvi-
ous way to find things inside is to cover nodes of the E8 diagram:

��	�
�� ��	�
�� ×��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
��

If we remove the shown node, you see that E8 contains A2 ×D5. We can
do better by showing that we can embed the affine Ẽ8 in the E8 lattice.

−highest root
��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
��
︸ ︷︷ ︸

simple roots

Now you can remove nodes here and get some bigger sub-diagrams. For
example, if we cover

��	�
�� ×��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
��

you get that an A1 ×E7 in E8. The E7 consisted of 126 roots orthogonal
to a given root. This gives an easy construction of E7 root system, as all
the elements of the E8 lattice perpendicular to (1,−1, 0 . . . )

We can cover

��	�
�� ��	�
�� ×��	�
�� ��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
��

Then we get an A2 × E6, where the E6 are all the vectors with the first
3 coordinates equal. So we get the E6 lattice for free too.

If you cover

��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ×��	�
��
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you see that there is a D8 in E8, which is all vectors of the E8 lattice
with integer coordinates. We sort of constructed the E8 lattice this way
in the first place.

We can ask questions like: What is the E8 Lie algebra as a represen-
tation of D8? To answer this, we look at the weights of the E8 algebra,
considered as a module over D8, which are the 112 roots of the form
(· · · ± 1 · · · ± 1 . . . ) and the 128 roots of the form (±1/2, . . . ) and 1 vec-
tor 0, with multiplicity 8. These give you the Lie algebra of D8. Recall
that D8 is the Lie algebra of SO16. The double cover has a half spin
representation of dimension 216/2−1 = 128. So E8 decomposes as a rep-
resentation of D8 as the adjoint representation (of dimension 120) plus a
half spin representation of dimension 128. This is often used to construct
the Lie algebra E8. We’ll do a better construction in a little while.

We’ve found that the Lie algebra of D8, which is the Lie algebra of
SO16, is contained in the Lie algebra of E8. Which group is contained in
the the compact form of the E8? We found that there were groups

Spin16(R)

hhhhhhhhhh
XXXXXXXXXXX

SO16(R)
VVVVVVVVVV Spin16(R)/(Z/2Z) ∼= ?> =<89 :;Spin16(R)/(Z/2Z)

fffffffffff

PSO16(R)

corresponding to subgroups of the center (Z/2Z)2:

1
kkkkkkkkk

SSSSSSSSS

Z/2Z
RRRRRR Z/2Z Z/2Z

llllll

(Z/2Z)2

We have a homomorphism Spin16(R) → E8(compact). What is the ker-
nel? The kernel are elements which act trivially on the Lie algebra of E8,
which is equal to the Lie algebra D8 plus the half spin representation.
On the Lie algebra of D8, everything in the center is trivial, and on the
half spin representation, one of the elements of order 2 is trivial. So the
subgroup that you get is the circled one.

◮ Exercise 26.1. Show SU(2) × E7(compact)/(−1,−1) is a subgroup
of E8 (compact). Similarly, show that SU(9)/(Z/3Z) is also. These are
similar to the example above.

Construction of E8

Earlier in the course, we had some constructions:
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1. using the Serre relations, but you don’t really have an idea of what
it looks like

2. Take D8 plus a half spin representation

Today, we’ll try to find a natural map from root lattices to Lie algebras.
The idea is as follows: Take a basis element eα (as a formal symbol)
for each root α; then take the Lie algebra to be the direct sum of 1
dimensional spaces generated by each eα and L (L root lattice ∼= Cartan
subalgebra) . Then we have to define the Lie bracket by setting [eα, eβ] =
eα+β , but then we have a sign problem because [eα, eβ] 6= −[eβ , eα]. Is
there some way to resolve the sign problem? The answer is that there is
no good way to solve this problem (not true, but whatever). Suppose we
had a nice functor from root lattices to Lie algebras. Then we would get
that the automorphism group of the lattice has to be contained in the
automorphism group of the Lie algebra (which is contained in the Lie
group), and the automorphism group of the Lattice contains the Weyl
group of the lattice. But the Weyl group is NOT usually a subgroup of
the Lie group.

We can see this going wrong even in the case of sl2(R). Remember
that the Weyl group is N(T )/T where T =

(
a 0
0 a−1

)
and N(T ) = T ∪

(
0 b

−b−1 0

)
, and this second part is stuff having order 4, so you cannot

possibly write this as a semi-direct product of T and the Weyl group.
So the Weyl group is not usually a subgroup of N(T ). The best we

can do is to find a group of the form 2n ·W ⊆ N(T ) where n is the rank.
For example, let’s do it for SL(n+1,R) Then T = diag(a1, . . . , an) with
a1 · · ·an = 1. Then we take the normalizer of the torus to be N(T ) =all
permutation matrices with ±1’s with determinant 1, so this is 2n · Sn,
and it does not split. The problem we had with signs can be traced back
to the fact that this group doesn’t split.

We can construct the Lie algebra from something acted on by 2n ·
W (but not from something acted on by W ). We take a CENTRAL
EXTENSION of the lattice by a group of order 2. Notation is a pain
because the lattice is written additively and the extension is nonabelian,
so you want it to be written multiplicatively. Write elements of the lattice
in the form eα formally, so we have converted the lattice operation to
multiplication. We will use the central extension

1 → ±1 → êL → eL
︸︷︷︸
∼=L

→ 1

We want êL to have the property that êαêβ = (−1)(α,β)êβ êα, where êα is
something mapping to eα. What do the automorphisms of êL look like?
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We get
1 → (L/2L)

︸ ︷︷ ︸

(Z/2)rank(L)

→ Aut(êL) → Aut(eL)

for α ∈ L/2L, we get the map êβ → (−1)(α,β)êβ. The map turns out
to be onto, and the group Aut(eL) contains the reflection group of the
lattice. This extension is usually non-split.

Now the Lie algebra is L⊕{1 dimensional spaces spanned by (êα,−êα)}
for α2 = 2 with the convention that −êα (−1 in the vector space)
is −êα (-1 in the group êL). Now define a Lie bracket by the “obvi-
ous rules” [α, β] = 0 for α, β ∈ L (the Cartan subalgebra is abelian),
[α, êβ] = (α, β)êβ (êβ is in the root space of β), and [êα, êβ ] = 0 if
(α, β) ≥ 0 (since (α + β)2 > 2), [êα, êβ] = êαêβ if (α, β) < 0 (product in
the group êL), and [êα, (êα)−1] = α.

Theorem 26.2. Assume L is positive definite. Then this Lie bracket
forms a Lie algebra (so it is skew and satisfies Jacobi).

Proof. Easy but tiresome, because there are a lot of cases; let’s do them
(or most of them).

We check the Jacobi identity: We want [[a, b], c]+[[b, c], a]+[[c, a], b] =
0

1. all of a, b, c in L. Trivial because all brackets are zero.

2. two of a, b, c in L. Say α, β, eγ

[[α, β], eγ]
︸ ︷︷ ︸

0

+ [[β, eγ], α]
︸ ︷︷ ︸

(β,α)(−α,β)eγ

+[[eγ , α], β]

and similar for the third term, giving a sum of 0.

3. one of a, b, c in L. α, eβ, eγ. eβ has weight β and eγ has weight γ
and eβeγ has weight β+γ. So check the cases, and you get Jacobi:

[[α, eβ], eγ ] = (α, β)[eβ, eγ ]

[[eβ , eγ], α] = −[α, [eβ, eγ ]] = −(α, β + γ)[eβ, eγ]

[[eγ , α], eβ] = −[[α, eγ ], eβ] = (α, γ)[eβ, eγ],

so the sum is zero.

4. none of a, b, c in L. This is the really tiresome one, eα, eβ, eγ . The
main point of going through this is to show that it isn’t as tiresome
as you might think. You can reduce it to two or three cases. Let’s
make our cases depending on (α, β), (α, γ), (β, γ).
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(a) if 2 of these are 0, then all the [[∗, ∗], ∗] are zero.

(b) α = −β. By case a, γ cannot be orthogonal to them, so say
(α, γ) = 1 (γ, β) = −1; adjust so that eαeβ = 1, then calculate

[[eγ , eβ], eα] − [[eα, eβ], eγ] + [[eα, eγ ], eβ] = eαeβeγ − (α, γ)eγ + 0

= eγ − eγ = 0.

(c) α = −β = γ, easy because [eα, eγ] = 0 and [[eα, eβ], eγ ] =
−[[eγ , eβ], eα]

(d) We have that each of the inner products is 1, 0 or −1. If some
(α, β) = 1, all brackets are 0.

This leaves two cases, which we’ll do next time
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Lecture 27

Last week we talked about êL, which was a double cover of eL. L is the
root lattice of E8. We had the sequence

1 → ±1 → êL → eL → 1.

The Lie algebra structure on êL was given by

[α, β] = 0

[α, eβ] = (α, β)eβ

[eα, eβ] =







0 if (α, β) ≥ 0

eαeβ if (α, β) = −1

α if (α, β) = −2

The Lie algebra is L⊕
⊕

α2=2 ê
α.

Let’s finish checking the Jacobi identity. We had two cases left:

[[eα, eβ], eγ ] + [[eβ, eγ ], eα] + [[eγ , eα], eβ] = 0

− (α, β) = (β, γ) = (γ, α) = −1, in which case α + β + γ = 0. then
[[eα, eβ], eγ] = [eαeβ , eγ] = α+β. By symmetry, the other two terms
are β + γ and γ+α;the sum of all three terms is 2(α+ β + γ) = 0.

− (α, β) = (β, γ) = −1, (α, γ) = 0, in which case [eα, eγ] = 0. We
check that [[eα, eβ], eα] = [eαeβ, eγ ] = eαeβeγ (since (α + β, γ) =
−1). Similarly, we have [[eβ , eγ], eα] = [eβeγ , eα] = eβeγeα. We
notice that eαeβ = −eβeα and eγeα = eαeγ so eαeβeγ = −eβeγeα;
again, the sum of all three terms in the Jacobi identity is 0.

This concludes the verification of the Jacobi identity, so we have a Lie
algebra.

Is there a proof avoiding case-by-case check? Good news: yes! Bad
news: it’s actually more work. We really have functors as follows:

Dynkin
diagrams

//

%%K
KKKKKKKKKKKKKKKKK

Double
cover L̂

��

elementary,
but tedious

only for positive
definite lattices

//

,,

Lie algebras

Root lattice L Vertex algebras

OO

these work
for any

even lattice

WW

hh
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where L̂ is generated by êαi (the i’s are the dots in your Dynkin diagram),
with êαi êαj = (−1)(αi,αj)êαj êαi , and −1 is central of order 2.

Unfortunately, you have to spend several weeks learning vertex alge-
bras. In fact, the construction we did was the vertex algebra approach,
with all the vertex algebras removed. So there is a more general construc-
tion which gives a much larger class of infinite dimensional Lie algebras.

Now we should study the double cover L̂, and in particular prove its
existence. Given a Dynkin diagram, we can construct L̂ as generated
by the elements eαi for αi simple roots with the given relations. It is
easy to check that we get a surjective homomorphism L̂ → L with kernel
generated by z with z2 = 1. What’s a little harder to show is that z 6= 1
(i.e., show that L̂ 6= L). The easiest way to do it is to use cohomology of
groups, but since we have such an explicit case, we’ll do it bare hands:
Problem: Given Z, H groups with Z abelian, construct central exten-
sions

1 → Z → G→ H → 1

(where Z lands in the center ofG). LetG be the set of pairs (z, h), and set
the product (z1, h1)(z2, h2) = (z1z2c(h1, h2), h1h2), where c(h1, h2) ∈ Z
(c(h1, h2) will be a cocycle in group cohomology). We obviously get a
homomorphism by mapping (z, h) 7→ h. If c(1, h) = c(h, 1) = 1 (normal-
ization), then z 7→ (z, 1) is a homomorphism mapping Z to the center
of G. In particular, (1, 1) is the identity. We’ll leave it as an exercise to
figure out what the inverses are. When is this thing associative? Let’s
just write everything out:

(
(z1, h1)(z2, h2)

)
(z3, h3) = (z1z2z3c(h1, h2)c(h1h2, h3), h1h2h3)

(z1, h1)
(
(z2, h2)(z3, h3)

)
= (z1z2z3c(h1, h2h3)c(h2, h3), h1h2h3)

so we must have

c(h1, h2)c(h1h2, h3) = c(h1h2, h3)c(h2, h3).

This identity is actually very easy to satisfy in one particular case: when
c is bimultiplicative: c(h1, h2h3) = c(h1, h2)c(h1, h3) and c(h1h2, h3) =
c(h1, h3)c(h2, h3). That is, we have a map H ×H → Z. Not all cocycles
come from such maps, but this is the case we care about.

To construct the double cover, let Z = ±1 and H = L (free abelian).
If we write H additively, we want c to be a bilinear map L × L → ±1.
It is really easy to construct bilinear maps on free abelian groups. Just
take any basis α1, . . . , αn of L, choose c(α1, αj) arbitrarily for each i, j
and extend c via bilinearity to L × L. In our case, we want to find a
double cover L̂ satisfying êαêβ = (−1)(α,β)êβ êα where êα is a lift of eα.
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This just means that c(α, β) = (−1)(α,β)c(β, α). To satisfy this, just
choose c(αi, αj) on the basis {αi} so that c(αi, αj) = (−1)(αi,αj)c(αj, αi).
This is trivial to do as (−1)(αi,αi) = 1. Notice that this uses the fact
that the lattice is even. There is no canonical way to choose this 2-
cocycle (otherwise, the central extension would split as a product), but
all the different double covers are isomorphic because we can specify L̂
by generators and relations. Thus, we have constructed L̂ (or rather,
verified that the kernel of L̂→ L has order 2, not 1).

Let’s now look at lifts of automorphisms of L to L̂.

◮ Exercise 27.1. Any automorphism of L preserving ( , ) lifts to an
automorphism of L̂

There are two special cases:

1. −1 is an automorphism of L, and we want to lift it to L̂ explicitly.
First attempt: try sending êα to ê−α := (êα)−1, which doesn’t work
because a 7→ a−1 is not an automorphism on non-abelian groups.

Better: ω : êα 7→ (−1)α
2/2(êα)−1 is an automorphism of L̂. To see

this, check

ω(êα)ω(êβ) = (−1)(α2+β2)/2(êα)−1(êβ)−1

ω(êαêβ) = (−1)(α+β)2/2(êβ)−1(êα)−1

which work out just right

2. If r2 = 2, then α 7→ α− (α, r)r is an automorphism of L (reflection

through r⊥). You can lift this by êα 7→ êα(êr)−(α,r) × (−1)(
(α,r)

2 ).
This is a homomorphism (check it!) of order (usually) 4!

Remark 27.1. Although automorphisms of L lift to automorphisms
of L̂, the lift might have larger order.

This construction works for the root lattices of An, Dn, E6, E7, and
E8; these are the lattices which are even, positive definite, and generated
by vectors of norm 2 (in fact, all such lattices are sums of the given ones).
What about Bn, Cn, F4 and G2? The reason the construction doesn’t
work for these cases is because there are roots of different lengths. These
all occur as fixed points of diagram automorphisms of An, Dn and E6.
In fact, we have a functor from Dynkin diagrams to Lie algebras, so and
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automorphism of the diagram gives an automorphism of the algebra

Involution Fixed points Involution Fixed Points
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�� ��	�
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��
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��
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A2n doesn’t really give you a new algebra: it corresponds to some
superalgebra stuff.

Construction of the Lie group of E8

It is the group of automorphisms of the Lie algebra generated by the ele-
ments exp(λAd(êα)), where λ is some real number, êα is one of the basis
elements of the Lie algebra corresponding to the root α, and Ad(êα)(a) =
[êα, a]. In other words,

exp(λAd(êα))(a) = 1 + λ[êα, a] +
λ2

2
[êα, [êα, a]].

and all the higher terms are zero. To see that Ad(êα)3 = 0, note that if
β is a root, then β + 3α is not a root (or 0).

� Warning 27.2. In general, the group generated by these automor-
phisms is NOT the whole automorphism group of the Lie algebra.

There might be extra diagram automorphisms, for example.

We get some other things from this construction. We can get simple
groups over finite fields: note that the construction of a Lie algebra above
works over any commutative ring (e.g. over Z). The only place we used
division is in exp(λAd(êα)) (where we divided by 2). The only time
this term is non-zero is when we apply exp(λAd(êα)) to ê−α, in which
case we find that [êα, [êα, ê−α]] = [êα, α] = −(α, α)êα, and the fact that
(α, α) = 2 cancels the division by 2. So we can in fact construct the E8

group over any commutative ring. You can mumble something about
group schemes over Z at this point. In particular, we have groups of
type E8 over finite fields, which are actually finite simple groups (these
are called Chevalley groups; it takes work to show that they are simple,
there is a book by Carter called Finite Simple Groups which you can
look at).
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Real forms

So we’ve constructed the Lie group and Lie algebra of type E8. There
are in fact several different groups of type E8. There is one complex
Lie algebra of type E8, which corresponds to several different real Lie
algebras of type E8.

Let’s look at some smaller groups:

Example 27.3. sl2(R) = ( a bc d ) with a, b, c, d real a + d = 0; this is not
compact. On the other hand, su2(R) = ( a bc d ) with d = −a imaginary
b = −c̄, is compact. These have the same Lie algebra over C.

Let’s look at what happens for E8. In general, suppose L is a Lie
algebra with complexification L⊗C. How can we find another Lie algebra
M with the same complexification? L⊗ C has an anti-linear involution
ωL : l⊗ z 7→ l⊗ z̄. Similarly, it has an anti-linear involution ωM . Notice
that ωLωM is a linear involution of L ⊗ C. Conversely, if we know this
involution, we can reconstruct M from it. Given an involution ω of
L ⊗ C, we can get M as the fixed points of the map a 7→ ωLω(a)“=”
ω(a). Another way is to put L = L+ ⊕ L−, which are the +1 and −1
eigenspaces, then M = L+ ⊕ iL−.

Thus, to find other real forms, we have to study the involutions of
the complexification of L. The exact relation is kind of subtle, but this
is a good way to go.

Example 27.4. Let L = sl2(R). It has an involution ω(m) = −mT .
su2(R) is the set of fixed points of the involution ω times complex con-
jugation on sl2(C), by definition.

So to construct real forms of E8, we want some involutions of the Lie
algebra E8 which we constructed. What involutions do we know about?
There are two obvious ways to construct involutions:

1. Lift −1 on L to êα 7→ (−1)α
2/2(êα)−1, which induces an involution

on the Lie algebra.

2. Take β ∈ L/2L, and look at the involution êα 7→ (−1)(α,β)êα.

(2) gives nothing new ... you get the Lie algebra you started with. (1)
only gives you one real form. To get all real forms, you multiply these
two kinds of involutions together.

Recall that L/2L has 3 orbits under the action of the Weyl group,
of size 1, 120, and 135. These will correspond to the three real forms of
E8. How do we distinguish different real forms? The answer was found
by Cartan: look at the signature of an invariant quadratic form on the
Lie algebra!
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A bilinear form ( , ) on a Lie algebra is called invariant if ([a, b], c) +
(b[a, c]) = 0 for all a, b, c. This is called invariant because it corresponds
to the form being invariant under the corresponding group action. Now
we can construct an invariant bilinear form on E8 as follows:

1. (α, β)in the Lie algebra = (α, β)in the lattice

2. (êα, (êα)−1) = 1

3. (a, b) = 0 if a and b are in root spaces α and β with α + β 6= 0.

This gives an invariant inner product on E8, which you prove by case-
by-case check

◮ Exercise 27.2. do these checks

Next time, we’ll use this to produce bilinear forms on all the real
forms and then we’ll calculate the signatures.
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Lecture 28

Last time, we constructed a Lie algebra of type E8, which was L⊕
⊕

êα,
where L is the root lattice and α2 = 2. This gives a double cover of the
root lattice:

1 → ±1 → êL → eL → 1.

We had a lift for ω(α) = −α, given by ω(êα) = (−1)(α2/2)(êα)−1. So ω be-
comes an automorphism of order 2 on the Lie algebra. eα 7→ (−1)(α,β)eα

is also an automorphism of the Lie algebra.
Suppose σ is an automorphism of order 2 of the real Lie algebra

L = L+ +L− (eigenspaces of σ). We saw that you can construct another
real form given by L+ + iL−. Thus, we have a map from conjugacy
classes of automorphisms with σ2 = 1 to real forms of L. This is not in
general in isomorphism.

Today we’ll construct some more real forms of E8. E8 has an invariant
symmetric bilinear form (eα, (eα)−1) = 1, (α, β) = (β, α). The form
is unique up to multiplication by a constant since E8 is an irreducible
representation of E8. So the absolute value of the signature is an invariant
of the Lie algebra.

For the split form of E8, what is the signature of the invariant bilinear
form (the split form is the one we just constructed)? On the Cartan
subalgebra L, ( , ) is positive definite, so we get +8 contribution to the
signature. On {eα, (eα)−1}, the form is ( 0 1

1 0 ), so it has signature 0 · 120.
Thus, the signature is 8. So if we find any real form with a different
signature, we’ll have found a new Lie algebra.

Let’s first try involutions eα 7→ (−1)(α,β)eα. But this doesn’t change
the signature. L is still positive definite, and you still have ( 0 1

1 0 ) or
(

0 −1
−1 0

)
on the other parts. These Lie algebras actually turn out to be

isomorphic to what we started with (though we haven’t shown that they
are isomorphic).

Now try ω : eα 7→ (−1)α
2/2(eα)−1, α 7→ −α. What is the signature

of the form? Let’s write down the + and − eigenspaces of ω. The +
eigenspace will be spanned by eα − e−α, and these vectors have norm
−2 and are orthogonal. The − eigenspace will be spanned by eα + e−α

and L, which have norm 2 and are orthogonal, and L is positive definite.
What is the Lie algebra corresponding to the involution ω? It will be
spanned by eα − e−α where α2 = 2 (norm −2), and i(eα + e−α) (norm
−2), and iL (which is now negative definite). So the bilinear form is
negative definite, with signature −248( 6= ±8).

With some more work, you can actually show that this is the Lie
algebra of the compact form of E8. This is because the automorphism
group of E8 preserves the invariant bilinear form, so it is contained in
O0,248(R), which is compact.
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Now let’s look at involutions of the form eα 7→ (−1)(α,β)ω(eα). Notice
that ω commutes with eα 7→ (−1)(α,β)eα. The β’s in (α, β) correspond to
L/2L modulo the action of the Weyl group W (E8). Remember this has
three orbits, with 1 norm 0 vector, 120 norm 2 vectors, and 135 norm 4
vectors. The norm 0 vector gives us the compact form. Let’s look at the
other cases and see what we get.

Suppose V has a negative definite symmetric inner product ( , ), and
suppose σ is an involution of V = V+ ⊕ V− (eigenspaces of σ). What is
the signature of the invariant inner product on V+ ⊕ iV−? On V+, it is
negative definite, and on iV− it is positive definite. Thus, the signature
is dim V−−dimV+ = −tr(σ). So we want to work out the traces of these
involutions.

Given some β ∈ L/2L, what is tr(eα 7→ (−1)(α,β)eα)? If β = 0, the
traces is obviously 248 because we just have the identity map. If β2 = 2,
we need to figure how many roots have a given inner product with β.
Recall that this was determined before:

(α, β) # of roots α with given inner product eigenvalue
2 1 1
1 56 -1
0 126 1
-1 56 -1
-2 1 1

Thus, the trace is 1 − 56 + 126 − 56 + 1 + 8 = 24 (the 8 is from the
Cartan subalgebra). So the signature of the corresponding form on the
Lie algebra is −24. We’ve found a third Lie algebra.

If we also look at the case when β2 = 4, what happens? How many
α with α2 = 2 and with given (α, β) are there? In this case, we have:

(α, β) # of roots α with given inner product eigenvalue
2 14 1
1 64 -1
0 84 1
-1 64 -1
-2 14 1

The trace will be 14− 64 + 84− 64 + 14 + 8 = −8. This is just the split
form again.

Summary: We’ve found 3 forms of E8, corresponding to 3 classes
in L/2L, with signatures 8, −24, −248, corresponding to involutions
eα 7→ (−1)(α,β)e−α of the compact form. If L is the compact form of a
simple Lie algebra, then Cartan showed that the other forms correspond
exactly to the conjugacy classes of involutions in the automorphism group
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of L (this doesn’t work if you don’t start with the compact form — so
always start with the compact form).

In fact, these three are the only forms of E8, but we won’t prove that.

Working with simple Lie groups

As an example of how to work with simple Lie groups, we will look at the
general question: Given a simple Lie group, what is its homotopy type?
Answer: G has a unique conjugacy class of maximal compact subgroups
K, and G is homotopy equivalent to K.

Proof for GLn(R). First pretend GLn(R) is simple, even though it isn’t;
whatever. There is an obvious compact subgroup: On(R). Suppose K
is any compact subgroup of GLn(R). Choose any positive definite form
( , ) on Rn. This will probably not be invariant under K, but since
K is compact, we can average it over K get one that is: define a new
form (a, b)new =

∫

K
(ka, kb) dk. This gives an invariant positive definite

bilinear form (since integral of something positive definite is positive
definite). Thus, any compact subgroup preserves some positive definite
form. But the subgroup fixing some positive definite bilinear form is
conjugate to a subgroup of On(R) (to see this, diagonalize the form). So
K is contained in a conjugate of On(R).

Next we want to show that G = GLn(R) is homotopy equivalent to
On(R) = K. We will show that G = KAN , where K is On, A is all
diagonal matrices with positive coefficients, and N is matrices which are
upper triangular with 1s on the diagonal. This is the Iwasawa decom-
position. In general, we get K compact, A semisimple abelian, and N
is unipotent. The proof of this you saw before was called the Grahm-
Schmidt process for orthonormalizing a basis. Suppose v1, . . . , vn is any
basis for Rn.

1. Make it orthogonal by subtracting some stuff, you’ll get v1, v2−∗v1,
v3 − ∗v2 − ∗v1, . . . .

2. Normalize by multiplying each basis vector so that it has norm 1.
Now we have an orthonormal basis.

This is just another way to say that GLn can be written as KAN . Mak-
ing things orthogonal is just multiplying by something in N , and normal-
izing is just multiplication by some diagonal matrix with positive entries.
An orthonormal basis is an element of On. Tada! This decomposition
is just a topological one, not a decomposition as groups. Uniqueness is
easy to check.
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Now we can get at the homotopy type of GLn. N ∼= Rn(n−1)/2,
and A ∼= (R+)n, which are contractible. Thus, GLn(R) has the same
homotopy type as On(R), its maximal compact subgroup.

If you wanted to know π1(GL3(R)), you could calculate π1(O3(R)) ∼=
Z/2Z, so GL3(R) has a double cover. Nobody has shown you this double
cover because it is not algebraic.

Example 28.1. Let’s go back to various forms of E8 and figure out
(guess) the fundamental groups. We need to know the maximal compact
subgroups.

1. One of them is easy: the compact form is its own maximal compact
subgroup. What is the fundamental group? Remember or quote
the fact that for compact simple groups, π1

∼= weight lattice
root lattice

, which is
1. So this form is simply connected.

2. β2 = 2 case (signature −24). Recall that there were 1, 56, 126,
56, and 1 roots α with (α, β) = 2, 1, 0,−1, and -2 respectively,
and there are another 8 dimensions for the Cartan subalgebra. On
the 1, 126, 1, 8 parts, the form is negative definite. The sum of
these root spaces gives a Lie algebra of type E7A1 with a negative
definite bilinear form (the 126 gives you the roots of an E7, and
the 1s are the roots of an A1). So it a reasonable guess that the
maximal compact subgroup has something to do with E7A1. E7

and A1 are not simply connected: the compact form of E7 has π1

= Z/2 and the compact form of A1 also has π1 = Z/2. So the
universal cover of E7A1 has center (Z/2)2. Which part of this acts
trivially onE8? We look at the E8 Lie algebra as a representation of
E7×A1. You can read off how it splits form the picture above: E8

∼=
E7 ⊕ A1 ⊕ 56 ⊗ 2, where 56 and 2 are irreducible, and the centers
of E7 and A1 both act as −1 on them. So the maximal compact
subgroup of this form of E8 is the simply connected compact form
of E7 ×A1/(−1,−1). This means that π1(E8) is the same as π1 of
the compact subgroup, which is (Z/2)2/(−1,−1) ∼= Z/2. So this
simple group has a nontrivial double cover (which is non-algebraic).

3. For the other (split) form of E8 with signature 8, the maximal
compact subgroup is Spin16(R)/(Z/2), and π1(E8) is Z/2.

You can compute any other homotopy invariants with this method.

Let’s look at the 56 dimensional representation of E7 in more detail.
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We had the picture
(α, β) # of α’s

2 1
1 56
0 126
-1 56
-2 1

The Lie algebra E7 fixes these 5 spaces of E8 of dimensions 1, 56, 126 +
8, 56, 1. From this we can get some representations of E7. The 126 + 8
splits as 1+(126+7). But we also get a 56 dimensional representation of
E7. Let’s show that this is actually an irreducible representation. Recall
that in calculating W (E8), we showed that W (E7) acts transitively on
this set of 56 roots of E8, which can be considered as weights of E7.

An irreducible representation is called minuscule if the Weyl group
acts transitively on the weights. This kind of representation is partic-
ularly easy to work with. It is really easy to work out the character
for example: just translate the 1 at the highest weight around, so every
weight has multiplicity 1.

So the 56 dimensional representation of E7 must actually be the irre-
ducible representation with whatever highest weight corresponds to one
of the vectors.

Every possible simple Lie group

We will construct them as follows: Take an involution σ of the compact
form L = L+ + L− of the Lie algebra, and form L+ + iL−. The way we
constructed these was to first construct An, Dn, E6, and E7 as for E8.
Then construct the involution ω : eα 7→ −e−α. We get Bn, Cn, F4, and
G2 as fixed points of the involution ω.

Kac classified all automorphisms of finite order of any compact simple
Lie group. The method we’ll use to classify involutions is extracted from
his method. We can construct lots of involutions as follows:

1. Take any Dynkin diagram, say E8, and select some of its vertices,
corresponding to simple roots. Get an involution by taking eα 7→
±eα where the sign depends on whether α is one of the simple
roots we’ve selected. However, this is not a great method. For one
thing, you get a lot of repeats (recall that there are only 3, and
we’ve found 28 this way).

��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
�� '!&"%#$1  '!&"%#$1

 '!&"%#$ 1
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2. Take any diagram automorphism of order 2, such as

��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
��zz $$}} !!

This gives you more involutions.

Next time, we’ll see how to cut down this set of involutions.
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Lecture 29

Split form of Lie algebra (we did this for An, Dn, E6, E7, E8): A =
⊕

êα ⊕ L. Compact form A+ + iA−, where A± eigenspaces of ω : êα 7→
(−1)α

2/2ê−α.
We talked about other involutions of the compact form. You get all

the other forms this way.
The idea now is to find ALL real simple Lie algebras by listing all

involutions of the compact form. We will construct all of them, but we
won’t prove that we have all of them.

We’ll use Kac’s method for classifying all automorphisms of order N
of a compact Lie algebra (and we’ll only use the case N = 2). First let’s
look at inner automorphisms. Write down the AFFINE Dynkin diagram

2
��	�
��

4
��	�
��

6
��	�
��

3��	�
��

5
��	�
��

4
��	�
��

3
��	�
��

2
��	�
��

1
−highest weight = ��	�
��

Choose ni with
∑
nimi = N where the mi are the numbers on the

diagram. We have an automorphism eαj 7→ e2πinj/Neαj induces an au-
tomorphism of order dividing N . This is obvious. The point of Kac’s
theorem is that all inner automorphisms of order dividing N are ob-
tained this way and are conjugate if and only if they are conjugate by an
automorphism of the Dynkin diagram. We won’t actually prove Kac’s
theorem because we just want to get a bunch of examples. See [Kac90]
or [Hel01].

Example 29.1. Real forms of E8. We’ve already found three, and it
took us a long time. We can now do it fast. We need to solve

∑
nimi = 2

where ni ≥ 0; there are only a few possibilities:

∑
nimi = 2 # of ways how to do it maximal compact

subgroup K

2 × 1 one way ��	�
����	�
����	�
��
��	�
��

��	�
����	�
����	�
����	�
��×��	�
�� E8 (compact form)

1 × 2 two ways ��	�
����	�
����	�
��
��	�
��

��	�
����	�
����	�
��×��	�
����	�
�� A1E7

×��	�
����	�
����	�
��
��	�
��

��	�
����	�
����	�
����	�
����	�
�� D8 (split form)
1 × 1 + 1 × 1 no ways

The points NOT crossed off form the Dynkin diagram of the maximal
compact subgroup. Thus, by just looking at the diagram, we can see
what all the real forms are!
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Example 29.2. Let’s do E7. Write down the affine diagram:

1��	�
�� 2��	�
�� 3��	�
�� 4��	�
��

2��	�
��

3��	�
�� 2��	�
�� 1��	�
��

We get the possibilities

∑
nimi = 2 # of ways how to do it maximal compact

subgroup K
2 × 1 one way* ×��	�
�� ��	�
�� ��	�
�� ��	�
��

��	�
��
��	�
�� ��	�
�� ��	�
�� E7 (compact form)

1 × 2 two ways* ��	�
�� ×��	�
�� ��	�
�� ��	�
��
��	�
��

��	�
�� ��	�
�� ��	�
�� A1D6

��	�
�� ��	�
�� ��	�
�� ��	�
��
×��	�
��

��	�
�� ��	�
�� ��	�
�� A7 (split form)**

1 × 1 + 1 × 1 one way ×��	�
�� ��	�
�� ��	�
�� ��	�
��
��	�
��

��	�
�� ��	�
�� ×��	�
�� E6 ⊕R ***

(*) The number of ways is counted up to automorphisms of the diagram.
(**) In the split real form, the maximal compact subgroup has dimension
equal to half the number of roots. The roots of A7 look like εi − εj for
i, j ≤ 8 and i 6= j, so the dimension is 8 · 7 + 7 = 56 = 112

2
.

(***) The maximal compact subgroup is E6 ⊕ R because the fixed sub-
algebra contains the whole Cartan subalgebra, and the E6 only accounts
for 6 of the 7 dimensions. You can use this to construct some interesting
representations of E6 (the minuscule ones). How does the algebra E7

decompose as a representation of the algebra E6 ⊕R?
We can decompose it according to the eigenvalues of R. The E6 ⊕R

is the zero eigenvalue of R [why?], and the rest is 54 dimensional. The
easy way to see the decomposition is to look at the roots. Remember
when we computed the Weyl group we looked for vectors like

��	�
�� ��	�
�� ��	�
�� or ��	�
�� ��	�
�� ��	�
��

The 27 possibilities (for each) form the weights of a 27 dimensional rep-
resentation of E6. The orthogonal complement of the two nodes is an E6

root system whose Weyl group acts transitively on these 27 vectors (we
showed that these form a single orbit, remember?). Vectors of the E7

root system are the vectors of the E6 root system plus these 27 vectors
plus the other 27 vectors. This splits up the E7 explicitly. The two 27s
form single orbits, so they are irreducible. Thus, E7

∼= E6 ⊕R⊕ 27⊕ 27,
and the 27s are minuscule.

Let K be a maximal compact subgroup, with Lie algebra R + E6.
The factor of R means that K has an S1 in its center. Now look at the
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space G/K, where G is the Lie group of type E7, and K is the maximal
compact subgroup. It is a Hermitian symmetric space. Symmetric space
means that it is a (simply connected) Riemannian manifold M such that
for each point p ∈M , there is an automorphism fixing p and acting as −1
on the tangent space. This looks weird, but it turns out that all kinds of
nice objects you know about are symmetric spaces. Typical examples you
may have seen: spheres Sn, hyperbolic space Hn, and Euclidean space
Rn. Roughly speaking, symmetric spaces have nice properties of these
spaces. Cartan classified all symmetric spaces: they are non-compact
simple Lie groups modulo the maximal compact subgroup (more or less
... depending on simply connectedness hypotheses ’n such). Historically,
Cartan classified simple Lie groups, and then later classified symmetric
spaces, and was surprised to find the same result. Hermitian symmetric
spaces are just symmetric spaces with a complex structure. A standard
example of this is the upper half plane {x+ iy|y > 0}. It is acted on by
SL2(R), which acts by ( a bc d ) τ = aτ+b

cτ+d
.

Let’s go back to this G/K and try to explain why we get a Hermitian
symmetric space from it. We’ll be rather sketchy here. First of all, to
make it a symmetric space, we have to find a nice invariant Riemannian
metric on it. It is sufficient to find a positive definite bilinear form on
the tangent space at p which is invariant under K ... then you can
translate it around. We can do this as K is compact (so you have the
averaging trick). Why is it Hermitian? We’ll show that there is an almost
complex structure. We have S1 acting on the tangent space of each point
because we have an S1 in the center of the stabilizer of any given point.
Identify this S1 with complex numbers of absolute value 1. This gives an
invariant almost complex structure on G/K. That is, each tangent space
is a complex vector space. Almost complex structures don’t always come
from complex structures, but this one does (it is integrable). Notice that
it is a little unexpected that G/K has a complex structure (G and K
are odd dimensional in the case of G = E7, K = E6 ⊕ R, so they have
no hope of having a complex structure).

Example 29.3. Let’s look at E6, with affine Dynkin diagram

1��	�
�� 2��	�
�� 3��	�
��

2��	�
��

1��	�
��

2��	�
�� 1��	�
��
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We get the possibilities
∑
nimi = 2 # of ways how to do it maximal compact

subgroup K
2 × 1 one way ��	�
�� ��	�
�� ��	�
��

��	�
��
×��	�
��

��	�
�� ��	�
�� E6 (compact form)

1 × 2 one way ��	�
�� ��	�
�� ��	�
��
×��	�
��
��	�
��

��	�
�� ��	�
�� A1A5

1 × 1 + 1 × 1 one way ×��	�
�� ��	�
�� ��	�
��
��	�
��
×��	�
��

��	�
�� ��	�
�� D5 ⊕R

In the last one, the maximal compact subalgebra is D5 ⊕ R. Just as
before, we get a Hermitian symmetric space. Let’s compute its dimension
(over C). The dimension will be the dimension of E6 minus the dimension
of D5 ⊕R, all divided by 2 (because we want complex dimension), which
is (78 − 46)/2 = 16.

So we have found two non-compact simply connected Hermitian sym-
metric spaces of dimensions 16 and 27. These are the only “exceptional”
cases; all the others fall into infinite families!

There are also some OUTER automorphisms of E6 coming from the
diagram automorphism

��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
�� ��	�
���� ��

σ

		 �� −→

��	�
��

��	�
��

��	�
��
��

��	�
��
The fixed point subalgebra has Dynkin diagram obtained by folding the
E6 on itself. This is the F4 Dynkin diagram. The fixed points of E6

under the diagram automorphism is an F4 Lie algebra. So we get a real
form of E6 with maximal compact subgroup F4. This is probably the
easiest way to construct F4, by the way. Moreover, we can decompose
E6 as a representation of F4. dimE6 = 78 and dimF4 = 52, so E6 =
F4 ⊕ 26, where 26 turns out to be irreducible (the smallest non-trivial
representation of F4 ... the only one anybody actually works with). The
roots of F4 look like (. . . ,±1,±1 . . . ) (24 of these) and (±1

2
· · · ± 1

2
) (16

of these), and (. . . ,±1 . . . ) (8 of them) ... the last two types are in the
same orbit of the Weyl group.
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The 26 dimensional representation has the following character: it has
all norm 1 roots with multiplicity 1 and 0 with multiplicity 2 (note that
this is not minuscule).

There is one other real form of E6. To get at it, we have to talk about
Kac’s description of non-inner automorphisms of order N . The non-inner
automorphisms all turn out to be related to diagram automorphisms.
Choose a diagram automorphism of order r, which divides N . Let’s take
the standard thing on E6. Fold the diagram (take the fixed points), and
form a TWISTED affine Dynkin diagram (note that the arrow goes the
wrong way from the affine F4)

1��	�
��
2��	�
��

3 ��	�
�� 2��	�
�� 1��	�
��
2��	�
��
1��	�
��

  

>>

r
$$

:: 1��	�
�� 2��	�
�� 3��	�
��// 2��	�
�� 1��	�
�� Twisted Affine F4

1
(

��	�
�� 2��	�
�� 3��	�
�� 4��	�
��// 2
Affine F4

)

��	�
��

33ggggg

There are also numbers on the twisted diagram, but nevermind them.
Find ni so that r

∑
nimi = N . This is Kac’s general rule. We’ll only

use the case N = 2.
If r > 1, the only possibility is r = 2 and one n1 is 1 and the

corresponding mi is 1. So we just have to find points of weight 1 in the
twisted affine Dynkin diagram. There are just two ways of doing this in
the case of E6

��	�
�� ��	�
�� ��	�
��// ��	�
�� ×��	�
�� and ×��	�
�� ��	�
�� ��	�
��// ��	�
�� ��	�
��

one of these gives us F4, and the other has maximal compact subalgebra
C4, which is the split form since dimC4 = #roots of F4/2 = 24.

Example 29.4. F4. The affine Dynkin is
1��	�
�� 2��	�
�� 3��	�
�� 4��	�
��// 2��	�
�� We

can cross out one node of weight 1, giving the compact form (split form),
or a node of weight 2 (in two ways), giving maximal compacts A1C3 or
B4. This gives us three real forms.

Example 29.5. G2. We can actually draw this root system ... UCB
won’t supply me with a four dimensional board. The construction is to
take the D4 algebra and look at the fixed points of:

��	�
��

��	�
��
��	�
��

��	�
��11
11

11
��

00

ρ

ZZ
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We want to find the fixed point subalgebra.
Fixed points on Cartan subalgebra: ρ fixes a two dimensional space,

and has 1 dimensional eigenspaces corresponding to ω and ω̄, where
ω3 = 1. The 2 dimensional space will be the Cartan subalgebra of G2.

Positive roots of D4 as linear combinations of simple roots (not fun-
damental weights):

01

0


0

11
1 00

1


0

11
1 00

0


1

11
1

gf ed

`a bc
10

0


0

11
1

gf ed

`a bc

11

0


0

11
1 10

1


0

11
1 10

0


1

11
1

gf ed

`a bc
11

1


1

11
1

gf ed

`a bc

11

1


0

11
1 10

1


1

11
1 11

0


1

11
1

gf ed

`a bc
21

1


1

11
1

gf ed

`a bc

︸ ︷︷ ︸

projections of norm 2/3
︸ ︷︷ ︸

projections of norm 2

There are six orbits under ρ, grouped above. It obviously acts on the
negative roots in exactly the same way. What we have is a root system
with six roots of norm 2 and six roots of norm 2/3. Thus, the root system
is G2:

2• 1•

1•1•

1 •

1
•

1
•

1•

1 












• 1•

11111111111111111

1•1•

1

11
11

11
11

11
11

11
11

1

•



One of the only root systems to appear on a country’s national flag. Now

let’s work out the real forms. Look at the affine: 1��	�
�� 2��	�
�� 3��	�
��// . we can
delete the node of weight 1, giving the compact form: ×��	�
�� ��	�
�� ��	�
��// . We
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can delete the node of weight 2, giving A1A1 as the compact subalgebra:
��	�
�� ×��	�
�� ��	�
��// ... this must be the split form because there is nothing else
the split form can be.

Let’s say some more about the split form. What does the Lie algebra
of G2 look like as a representation of the maximal compact subalgebra
A1×A1? In this case, it is small enough that we can just draw a picture:

2 1•

1•1•

1 •

1
•

1
•

1•

1• 1•

1•1•

1
•

?> =<89 :;

?> =<

89 :;

−→

1•1•

1
•

1
•

1
•

1
•

1•1•?> =<
89 :;

?> =<

89 :;

We have two orthogonal A1s, and we have leftover the stuff on the right.
This thing on the right is a tensor product of the 4 dimensional irre-
ducible representation of the horizontal and the 2 dimensional of the
vertical. Thus, G2 = 3× 1 + 1⊗ 3 + 4⊗ 2 as irreducible representations
of A

(horizontal)
1 ⊗ A

(vertical)
1 .

Let’s use this to determine exactly what the maximal compact sub-
group is. It is a quotient of the simply connected compact group SU(2)×
SU(2), with Lie algebra A1 × A1. Just as for E8, we need to identify
which elements of the center act trivially on G2. The center is Z/2×Z/2.
Since we’ve decomposed G2, we can compute this easily. A non-trivial
element of the center of SU(2) acts as 1 (on odd dimensional repre-
sentations) or −1 (on even dimensional representations). So the ele-
ment z × z ∈ SU(2) × SU(2) acts trivially on 3 ⊗ 1 + 1 ⊗ 3 + 4 × 2.
Thus the maximal compact subgroup of the non-compact simple G2 is
SU(2) × SU(2)/(z × z) ∼= SO4(R), where z is the non-trivial element of
Z/2.

So we have constructed 3 + 4 + 5 + 3 + 2 (from E8, E7, E6, F4, G2)
real forms of exceptional simple Lie groups.

There are another 5 exceptional real Lie groups: Take COMPLEX
groups E8(C), E7(C), E6(C), F4(C), and G2(C), and consider them as
REAL. These give simple real Lie groups of dimensions 248×2, 133×2,
78 × 2, 52 × 2, and 14 × 2.
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Lecture 30 - Irreducible unitary representa-

tions of SL2(R)

SL2(R) is non-compact. For compact Lie groups, all unitary represen-
tations are finite dimensional, and are all known well. For non-compact
groups, the theory is much more complicated. Before doing the infinite
dimensional representations, we’ll review finite dimensional (usually not
unitary) representations of SL2(R).

Finite dimensional representations

Finite dimensional complex representations of the following are much
the same: SL2(R), sl2R, sl2C [branch SL2(C) as a complex Lie group]
(as a complex Lie algebra), su2R (as a real Lie algebra), and SU2 (as
a real Lie group). This is because finite dimensional representations
of a simply connected Lie group are in bijection with representations
of the Lie algebra. Complex representations of a REAL Lie algebra
L correspond to complex representations of its complexification L ⊗ C
considered as a COMPLEX Lie algebra.

Note: Representations of a COMPLEX Lie algebra L ⊗ C are not
the same as representations of the REAL Lie algebra L ⊗ C ∼= L + L.
The representations of the real Lie algebra correspond roughly to (reps
of L)⊗(reps of L).

Strictly speaking, SL2(R) is not simply connected, which is not im-
portant for finite dimensional representations.

Recall the main results for representations of SU2:

1. For each positive integer n, there is one irreducible representation
of dimension n.

2. The representations are completely reducible (every representation
is a sum of irreducible ones). This is perhaps the most important
fact.

The finite dimensional representation theory of SU2 is EASIER
than the representation theory of the ABELIAN Lie group R2, and
that is because representations of SU2 are completely reducible.

For example, it is very difficult to classify pairs of commuting nilpo-
tent matrices.

Completely reducible representations:

1. Complex representations of finite groups.

2. Representations of compact groups (Weyl character formula)
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3. More generally, unitary representations of anything (you can take
orthogonal complements of subrepresentations)

4. Finite dimensional representations of semisimple Lie groups.

Representations which are not completely reducible:

1. Representations of a finite group G over fields of characteristic
p| |G|.

2. Infinite dimensional representations of non-compact Lie groups (even
if they are semisimple).

We’ll work with the Lie algebra sl2R, which has basis H = ( 1 0
0 −1 ),

E = ( 0 1
0 0 ), and F = ( 0 0

1 0 ). H is a basis for the Cartan subalgebra ( a 0
0 −a ).

E spans the root space of the simple root. F spans the root space of the
negative of the simple root. We find that [H,E] = 2E, [H,F ] = −2F
(so E and F are eigenvectors of H), and you can check that [E,F ] = H .

0

H
•

−2
•
F

2•
EBB

Weyl group of order 2

\\

weights = eigenvalues under Hoo

The Weyl group is generated by ω = ( 0 1
−1 0 ) and ω2 =

(−1 0
0 −1

)
.

Let V be a finite dimensional irreducible complex representation
of sl2R. First decompose V into eigenspaces of the Cartan subalge-
bra (weight spaces) (i.e. eigenspaces of the element H). Note that
eigenspaces of H exist because V is FINITE-DIMENSIONAL (remem-
ber this is a complex representation). Look at the LARGEST eigenvalue
of H (exists since V is finite dimensional), with eigenvector v. We have
that Hv = nv for some n. Compute

H(Ev) = [H,E]v + E(Hv)

= 2Ev + Env = (n + 2)Ev

So Ev = 0 (lest it be an eigenvector of H with higher eigenvalue). [E,−]
increases weights by 2 and [F,−] decreases weights by 2, and [H,−] fixes
weights.

We have that E kills v, and H multiplies it by n. What does F do
to v?

nv (n− 2)Fv (n− 4)F 2v (n− 6)F 3v . . .

0 v
E

hh

H

OO

F
++
Fv

E
×n

jj

H

OO

F
,,
F 2v

E
×(2n−2)

ll

H

OO

F
,,
F 3v

E
×(3n−6)

ll

H

OO

. . .
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What is E(Fv)? Well,

EFv = FEv + [E,F ]v

= 0 +Hv = nv

In general, we have

H(F iv) = (n− 2i)F iv

E(F iv) = (ni− i(i− 1))F i−1v

F (F iv) = F i+1v

So the vectors F iv span V because they span an invariant subspace. This
gives us an infinite number of vectors in distinct eigenspaces of H , and
V is finite dimensional. Thus, F kv = 0 for some k. Suppose k is the
SMALLEST integer such that F kv = 0. Then

0 = E(F kv) = (nk − k(k − 1))EF k−1v
︸ ︷︷ ︸

6=0

So nk − k(k − 1) = 0, and k 6= 0, so n− (k − 1) = 0, so k = n+ 1 . So
V has a basis consisting of v, Fv, . . . , F nv. The formulas become a little
better if we use the basis wn = v, wn−2 = Fv, wn−4 = F 2v

2!
, F

3v
3!
, . . . , F

nv
n!

.

w−6

1

!!

aa

6

w−4

2

!!

aa

5

w−2

3

  

``

4

w0

4

��

__

3

w2

5

��

__

2

w4

6

��

__

1

w6

E

F

This says that E(w2) = 5w4 for example. So we’ve found a complete
description of all finite dimensional irreducible complex representations
of sl2R. This is as explicit as you could possibly want.

These representations all lift to the group SL2(R): SL2(R) acts on
homogeneous polynomials of degree n by ( a bc d ) f(x, y) = f(ax+ by, cx+
dy). This is an n + 1 dimensional space, and you can check that the
eigenspaces are xiyn−i.

We have implicitly constructed VERMA MODULES. We have a ba-
sis wn, wn−2, . . . , wn−2i, . . . with relations H(wn−2i) = (n − 2i)wn−2i,
Ewn−2i = (n − i + 1)wn−2i+2, and Fwn−2i = (i + 1)wn−2i−2. These
are obtained by copying the formulas from the finite dimensional case,
but allow it to be infinite dimensional. This is the universal representa-
tion generated by the highest weight vector wn with eigenvalue n under
H (highest weight just means E(wn) = 0).

Let’s look at some things that go wrong in infinite dimensions.
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� Warning 30.1. Representations corresponding to the Verma mod-
ules do NOT lift to representations of SL2(R), or even to its univer-

sal cover. The reason: look at the Weyl group (generated by ( 0 1
−1 0 )) of

SL2(R) acting on 〈H〉; it changes H to −H . It maps eigenspaces with
eigenvalue m to eigenvalue −m. But if you look at the Verma module, it
has eigenspaces n, n−2, n−4, . . . , and this set is obviously not invariant
under changing sign. The usual proof that representations of the Lie al-
gebra lifts uses the exponential map of matrices, which doesn’t converge
in infinite dimensions.

Remark 30.2. The universal cover S̃L2(R) of SL2(R), or even the double
cover Mp2(R), has NO faithful finite dimensional representations.

Proof. Any finite dimensional representation comes from a finite dimen-
sional representation of the Lie algebra sl2R. All such finite dimensional
representations factor through SL2(R).

All finite dimensional representations of SL2(R) are completely reducible.
Weyl did this by Weyl’s unitarian trick:

Notice that finite dimensional representations of SL2(R) are isomor-
phic (sort of) to finite dimensional representations of the COMPACT
group SU2 (because they have the same complexified Lie algebras. Thus,
we just have to show it for SU2. But representations of ANY compact
group are completely reducible. Reason:

1. All unitary representations are completely reducible (if U ⊆ V ,
then V = U ⊕ U⊥).

2. Any representation V of a COMPACT group G can be made uni-
tary: take any unitary form on V (not necessarily invariant under
G), and average it over G to get an invariant unitary form. We can
average because G is compact, so we can integrate any continuous
function over G. This form is positive definite since it is the av-
erage of positive definite forms (if you try this with non-(positive
definite) forms, you might get zero as a result).

The Casimir operator

Set Ω = 2EF+2FE+H2 ∈ U(sl2R). The main point is that Ω commutes
with sl2R. You can check this by brute force:

[H,Ω] = 2 ([H,E]F + E[H,F ])
︸ ︷︷ ︸

0

+ · · ·

[E,Ω] = 2[E,E]F + 2E[F,E] + 2[E,F ]E

+ 2F [E,E] + [E,H ]H +H [E,H ] = 0

[F,Ω] = Similar
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Thus, Ω is in the center of U(sl2R). In fact, it generates the center. This
doesn’t really explain where Ω comes from.

Remark 30.3. Why does Ω exist? The answer is that it comes from
a symmetric invariant bilinear form on the Lie algebra sl2R given by
(E,F ) = 1, (E,E) = (F, F ) = (F,H) = (E,H) = 0, (H,H) = 2. This
bilinear form is an invariant map L ⊗ L → C, where L = sl2R, which
by duality gives an invariant element in L ⊗ L, which turns out to be
2E ⊗ F + 2F ⊗E +H ⊗H . The invariance of this element corresponds
to Ω being in the center of U(sl2R).

Since Ω is in the center of U(sl2R), it acts on each irreducible rep-
resentation as multiplication by a constant. We can work out what this
constant is for the finite dimensional representations. Apply Ω to the
highest vector wn:

(2EF + 2FE +HH)wn = (2n+ 0 + n2)wn

= (2n+ n2)wn

So Ω has eigenvalue 2n+ n2 on the irreducible representation of dimen-
sion n + 1. Thus, Ω has DISTINCT eigenvalues on different irreducible
representations, so it can be used to separate different irreducible repre-
sentations. The main use of Ω will be in the next lecture, where we’ll
use it to deal with infinite dimensional representation.

To finish today’s lecture, let’s look at an application of Ω. We’ll sketch
an algebraic argument that the representations of sl2R are completely
reducible. Given an exact sequence of representations

0 → U → V → W → 0

we want to find a splitting W → V , so that V = U ⊕W .
Step 1: Reduce to the case where W = C. The idea is to look at

0 → HomC(W,U) → HomC(W,V ) → HomC(W,W ) → 0

and HomC(W,W ) has an obvious one dimensional subspace, so we can
get a smaller exact sequence

0 → HomC(W,U) → subspace of HomC(W,V ) → C→ 0

and if we can split this, the original sequence splits.
Step 2: Reduce to the case where U is irreducible. This is an easy

induction on the number of irreducible components of U .

◮ Exercise 30.1. Do this.
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Step 3: This is the key step. We have

0 → U → V → C→ 0

with U irreducible. Now apply the Casimir operator Ω. V splits as
eigenvalues of Ω, so is U ⊕ C UNLESS U has the same eigenvalue as C
(i.e. unless U = C).

Step 4: We have reduced to

0 → C→ V → C→ 0

which splits because sl2(R) is perfect1 (no homomorphisms to the abelian
algebra ( 0 ∗

0 0 )).
Next time, in the final lecture, we’ll talk about infinite dimensional

unitary representations.

1L is perfect if [L, L] = L
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Lecture 31 - Unitary representations of SL2(R)

Last lecture, we found the finite dimensional (non-unitary) representa-
tions of SL2(R).

Background about infinite dimensional representa-
tions

(of a Lie group G) What is an finite dimensional representation?

1st guess Banach space acted on by G?

This is no good for some reasons: Look at the action of G on the
functions on G (by left translation). We could use L2 functions, or
L1 or Lp. These are completely different Banach spaces, but they
are essentially the same representation.

2nd guess Hilbert space acted on by G? This is sort of okay.

The problem is that finite dimensional representations of SL2(R)
are NOT Hilbert space representations, so we are throwing away
some interesting representations.

Solution (Harish-Chandra) Take g to be the Lie algebra of G, and let K
be the maximal compact subgroup. If V is an infinite dimensional
representation of G, there is no reason why g should act on V .

The simplest example fails. Let R act on L2(R) by left translation.
Then the Lie algebra is generated by d

dx
(or i d

dx
) acting on L2(R),

but d
dx

of an L2 function is not in L2 in general.

Let V be a Hilbert space. Set Vω to be the K-finite vectors of V ,
which are the vectors contained in a finite dimensional represen-
tation of K. The point is that K is compact, so V splits into a
Hilbert space direct sum finite dimensional representations of K,
at least if V is a Hilbert space. Then Vω is a representation of the
Lie algebra g, not a representation of G. Vω is a representation of
the group K. It is a (g, K)-module, which means that it is acted
on by g and K in a “compatible” way, where compatible means
that

1. they give the same representations of the Lie algebra of K.

2. k(u)v = k(u(k−1v)) for k ∈ K, u ∈ g, and v ∈ V .

The K-finite vectors of an irreducible unitary representation of
G is ADMISSIBLE, which means that every representation of K
only occurs a finite number of times. The GOOD category of
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representations is the representations of admissible (g, K)-modules.
It turns out that this is a really well behaved category.

We want to find the unitary irreducible representations of G. We will
do this in several steps:

1. Classify all irreducible admissible representations of G. This was
solved by Langlands, Harish-Chandra et. al.

2. Find which have hermitian inner products ( , ). This is easy.

3. Find which ones are positive definite. This is VERY HARD. We’ll
only do this for the simplest case: SL2(R).

The group SL2(R)

We found some generators (in Lie(SL2(R)) ⊗ C last time: E, F , H ,
with [H,E] = 2E, [H,F ] = −2F , and [E,F ] = H . We have that
H = −i ( 0 1

−1 0 ), E = 1
2
( 1 i
i −1 ), and F = 1

2

(
1 −i
−i −1

)
. Why not use the old

( 1 0
0 −1 ), ( 0 1

0 0 ), and ( 0 0
1 0 )?

Because SL2(R) has two different classes of Cartan subgroup:
(
a 0
0 a−1

)
,

spanned by ( 1 0
0 −1 ), and

(
cos θ sin θ
− sin θ cos θ

)
, spanned by ( 0 1

−1 0 ), and the second
one is COMPACT. The point is that non-compact (abelian) groups need
not have eigenvectors on infinite dimensional spaces. An eigenvector
is the same as a weight space. The first thing you do is split it into
weight spaces, and if your Cartan subgroup is not compact, you can’t
get started. We work with the compact subalgebra so that the weight
spaces exist.

Given the representation V , we can write it as some direct sum of
eigenspaces of H , as the Lie group H generates is compact (isomorphic
to S1). In the finite dimensional case, we found a HIGHEST weight,
which gave us complete control over the representation. The trouble is
that in infinite dimensions, there is no reason for the highest weight to
exist, and in general they don’t. The highest weight requires a finite
number of eigenvalues.

A good substituted for the highest weight vector: Look at the Casimir
operator Ω = 2EF + 2FE + H2 + 1. The key point is that Ω is in the
center of the universal enveloping algebra. As V is assumed admissible,
we can conclude that Ω has eigenvectors (because we can find a finite
dimensional space acted on by Ω). As V is irreducible and Ω commutes
with G, all of V is an eigenspace of Ω. We’ll see that this gives us about
as much information as a highest weight vector.

Let the eigenvalue of Ω on V be λ2 (the square will make the in-
teresting representations have integral λ; the +1 in Ω is for the same
reason).
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Suppose v ∈ Vn, where Vn is the space of vectors where H has eigen-
value n. In the finite dimensional case, we looked at Ev, and saw that
HEv = (n + 2)Ev. What is FEv? If v was a highest weight vector,
we could control this. Notice that Ω = 4FE + H2 + 2H + 1 (using
[E,F ] = H), and Ωv = λ2v. This says that 4FEv+n2v+2nv+v = λ2v.
This shows that FEv is a multiple of v.

Now we can draw a picture of what the representation looks like:

· · ·
��

]]
vn−4

��

]]
vn−2

��

]]
vn

��

]]

(
n2+2n+1−λ2

4

)

vn+2
��

]]
vn+4

��

]]
· · ·

E

H

F

Thus, Vω is spanned by Vn+2k, where k is an integer. The non-zero
elements among the Vn+2k are linearly independent as they have different
eigenvalues. The only question remaining is whether any of the Vn+2k

vanish.
There are four possible shapes for an irreducible representation

– infinite in both directions: · · · %%
ee · %%

ee · %%
ee · %%

ee · %%
ee · · ·

E
H
F

– a lowest weight, and infinite in the other direction:

· · · %%
ee · %%

ee · %%
ee · %%

ee · %%
ee · E

H
F

– a highest weight, and infinite in the other direction:

· %%
ee · %%

ee · %%
ee · %%

ee · %%
ee · · ·

E
H
F

– we have a highest weight and a lowest weight, in which case it is

finite dimensional · %%
ee · %%

ee · · · %%
ee · %%

ee · E
H
F

We’ll see that all these show up. We also see that an irreducible rep-
resentation is completely determined once we know λ and some n for
which Vn 6= 0. The remaining question is to construct representations
with all possible values of λ ∈ C and n ∈ Z. n is an integer because it
must be a representations of the circle.

If n is even, we have

· · ·
��

[[ −6
��

[[ −4
��

[[ −2
��

[[ 0
��

[[ 2
��

[[ 4
��

[[ 6
��

[[
· · ·

E

H

F

λ−7
2

λ−5
2

λ−3
2

λ−1
2

λ+1
2

λ+3
2

λ+5
2

λ+7
2

λ+7
2

λ+5
2

λ+3
2

λ+1
2

λ−1
2

λ−3
2

λ−5
2

λ−7
2
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It is easy to check that these maps satisfy [E,F ] = H , [H,E] = 2E,
and [H,F ] = −2F

◮ Exercise 31.1. Do the case of n odd.

Problem: These may not be irreducible, and we want to decompose
them into irreducible representations. The only way they can fail to
be irreducible if if Evn = 0 of Fvn = 0 for some n (otherwise, from
any vector, you can generate the whole space). The only ways that can
happen is if

n even: λ an odd integer
n odd: λ an even integer.

What happens in these cases? The easiest thing is probably just to write
out an example.

Example 31.1. Take n even, and λ = 3, so we have

· · ·
��

[[ −6
��

[[ −4
��

[[ −2
��

[[ 0
��

[[ 2
��

[[ 4
��

[[ 6
��

[[
· · ·

E

H

F

−2 −1 0 1 2 3 4 5

5 4 3 2 1 0 −1 −2

You can just see what the irreducible subrepresentations are ... they are
shown in the picture. So V has two irreducible subrepresentations V−
and V+, and V/(V−⊕V+) is an irreducible 3 dimensional representation.

Example 31.2. If n is even, but λ is negative, say λ = −3, we get

· · ·
��

[[ −6
��

[[ −4
��

[[ −2
��

[[ 0
��

[[ 2
��

[[ 4
��

[[ 6
��

[[
· · ·

E

H

F

−5 −4 −3 −2 −1 0 1 2

2 1 0 −1 −2 −3 −4 −5

Here we have an irreducible finite dimensional representation. If you
quotient out by that subrepresentation, you get V+ ⊕ V−.

◮ Exercise 31.2. Show that for n odd, and λ = 0, V = V+ ⊕ V−.

So we have a complete list of all irreducible admissible representa-
tions:

1. if λ 6∈ Z, you get one representation (remember λ ≡ −λ). This is
the bi-infinite case.

2. Finite dimensional representation for each n ≥ 1 (λ = ±n)
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3. Discrete series for each λ ∈ Zr {0}, which is the half infinite case:
you get a lowest weight when λ < 0 and a highest weight when
λ > 0.

4. two “limits of discrete series” where n is odd and λ = 0.

Which of these can be made into unitary representations? H† = −H ,
E† = F , and F † = E. If we have a hermitian inner product ( , ), we see
that

(vj+2, vj+2) =
2

λ+ j + 1
(Evj , vj+2)

=
2

λ+ j + 1
(vj ,−Fvj+2)

= − 2

λ+ j + 1

λ− j − 1

2
(vj , vj) > 0

where we fix the sign errors. So we want −λ−1−j
λ+j+1

to be real and positive
whenever j, j + 2 are non-zero eigenvectors. So

−(λ− 1 − j)(λ+ 1 + j) = −λ2 + (j + 1)2

should be positive for all j. Conversely, when you have this, blah.
This condition is satisfied in the following cases:

1. λ2 ≤ 0. These representations are called PRINCIPAL SERIES
representations. These are all irreducible except when λ = 0 and
n is odd, in which case it is the sum of two limits of discrete series
representations

2. 0 < λ < 1 and j even. These are called COMPLEMENTARY
SERIES. They are annoying, and you spend a lot of time trying to
show that they don’t occur.

3. λ2 = n2 for n ≥ 1 (for some of the irreducible pieces).

If λ = 1, we get

· · ·
��

[[ −6
��

[[ −4
��

[[ −2
��

[[ 0
��

[[ 2
��

[[ 4
��

[[ 6
��

[[
· · ·

E

H

F

−3 −2 −1 0 1 2 3 4

4 3 2 1 0 −1 −2 −3

We see that we get two discrete series and a 1 dimensional repre-
sentation, all of which are unitary
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For λ = 2 (this is the more generic one), we have

· · ·
��

[[ −5
��

[[ −3
��

[[ −1
��

[[ 1
��

[[ 3
��

[[ 5
��

[[
· · ·

E

H

F

−2 −1 0 1 2 3 4

4 3 2 1 0 −1 −2

The middle representation (where (j+1)2 < λ2 = 4 is NOT unitary,
which we already knew. So the DISCRETE SERIES representa-
tions ARE unitary, and the FINITE dimensional representations
of dimension greater than or equal to 2 are NOT.

Summary: the irreducible unitary representations of SL2(R) are given
by

1. the 1 dimensional representation

2. Discrete series representations for any λ ∈ Z r {0}

3. Two limit of discrete series representations for λ = 0

4. Two series of principal series representations:

j even: λ ∈ iR, λ ≥ 0
j odd: λ ∈ iR, λ > 0

5. Complementary series: parameterized by λ, with 0 < λ < 1.

The nice stuff that happened for SL2(R) breaks down for more com-
plicated Lie groups.

Representations of finite covers of SL2(R) are similar, except j need

not be integral. For example, for the double cover ŜL2(R) = Mp2(R),
2j ∈ Z.

◮ Exercise 31.3. Find the irreducible unitary representations ofMp2(R).


