# QUADRATIC REPROCITY AND THE THETA FUNCTION 

## TERENCE TAO

Abstract. We give the standard proof of the quadratic reciprocity law using Theta functions.

## 1. Introduction

Define the theta function $\vartheta(s)$ for any $\operatorname{Re}(s)>0$ by the formula

$$
\vartheta(s):=\sum_{n=-\infty}^{\infty} e^{-\pi n^{2} s}
$$

It is easy to see that this converges to an analytic function on the right-half plane $\operatorname{Re}(s)>0$. Since the Fourier transform of $f(x)=e^{-\pi x^{2} s}$ is $\hat{f}(\xi)=s^{-1 / 2} e^{-\pi \xi^{2} / s}$ (where we use the standard branch of the square root on the right-half plane, an easy application of the Poisson summation formula leads to the functional equation

$$
\begin{equation*}
\vartheta(s)=s^{-1 / 2} \vartheta(1 / s) \tag{1}
\end{equation*}
$$

Now we investigate the limiting behavior of $\vartheta(s)$ as $s$ approaches the imaginary axis. We introduce the Gauss sum

$$
S\left(\frac{a}{q}\right):=\frac{1}{q} \sum_{r=0}^{q-1} e^{-2 \pi i a r^{2} / q}=\frac{1}{q} \sum_{r \in \mathbf{Z} / q \mathbf{Z}} e^{-2 \pi i a r^{2} / q}
$$

since the function $r \mapsto e^{-2 \pi i a r^{2} / q}$ is periodic with period $q$, we see that $S\left(\frac{a}{q}\right)=$ $S\left(\frac{k a}{k q}\right)$ for any $k \geq 1$, so the notation is well-defined. Note that $S$ is periodic modulo 1 , so that only the residue class of $a$ modulo $q$ is relevant.

Lemma 1.1. For any rational number $p / q$ with $q>0$, we have

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{1 / 2} \vartheta\left(i \frac{p}{q}+\varepsilon\right)=S\left(\frac{p}{2 q}\right)
$$

Proof We have

$$
\varepsilon^{1 / 2} \vartheta\left(i \frac{p}{q}+\varepsilon\right)=\sum_{n=-\infty}^{\infty} e^{-i \pi p n^{2} / q} \varepsilon^{1 / 2} e^{-\pi \varepsilon n^{2}}
$$

Writing $n=2 q m+r$, where $0 \leq r<2 q-1$, observe that $\pi p n^{2} / q$ and $\pi p r^{2} / q$ differ by an integer multiple of $2 \pi$. We thus have

$$
\varepsilon^{1 / 2} \vartheta\left(i \frac{p}{q}+\varepsilon\right)=\sum_{r=0}^{2 q-1} e^{-i \pi p n^{2} / q} \sum_{m=-\infty}^{\infty} \varepsilon^{1 / 2} e^{-\pi \varepsilon(2 q m+r)^{2}}
$$

1991 Mathematics Subject Classification. 42B15, 35L05.

Writing $x=\varepsilon^{1 / 2}(2 q m+r)$, we can write this as

$$
\varepsilon^{1 / 2} \vartheta\left(i \frac{p}{q}+\varepsilon\right)=\frac{1}{2 q} \sum_{r=0}^{2 q-1} e^{-i \pi p n^{2} / q} \sum_{x \in \varepsilon^{1 / 2}\left(2 q \mathbf{Z}_{+r)}\right.} e^{-\pi x^{2}} \Delta x
$$

where $\Delta x=2 q \varepsilon^{1 / 2}$ is the spacing of $x$. Taking limits, and noting that the Riemann sum converges to the Riemann integral, we conclude

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{1 / 2} \vartheta\left(i \frac{p}{q}+\varepsilon\right)=\frac{1}{2 q} \sum_{r=0}^{2 q-1} e^{-i \pi p n^{2} / q} \int_{-\infty}^{\infty} e^{-\pi x^{2}} d x
$$

Since the integral equals 1 , the claim follows.
We remark that an easy perturbation argument also gives

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{1 / 2} \vartheta\left(i \frac{p}{q}+\varepsilon+O\left(\varepsilon^{2}\right)\right)=S\left(\frac{p}{2 q}\right)
$$

i.e. one can vary the approach region to $i \frac{p}{q}$ a little bit. Now from (1) we have

$$
\vartheta\left(i \frac{p}{q}+\varepsilon\right)=\left(i \frac{p}{q}+\varepsilon\right)^{-1 / 2} \vartheta\left(-i \frac{q}{p}+\frac{q^{2}}{p^{2}} \varepsilon+O\left(\varepsilon^{2}\right)\right)
$$

(Here we allow the $O()$ errors to depend on $p, q$.) Multiplying by $\varepsilon^{1 / 2}$ and taking limits as $\varepsilon \rightarrow 0$ using the above lemma, we obtain for $p, q>0$ Schaar's identity

$$
\sqrt{q} S\left(\frac{p}{2 q}\right)=e^{-\pi i / 4} \sqrt{p} S\left(\frac{q}{2 p}\right) .
$$

Applying Schaar's identity for $p=2$ we obtain

$$
S\left(\frac{1}{q}\right)=\frac{1}{\sqrt{q}} e^{-\pi i / 4} \sqrt{2} \overline{S\left(\frac{q}{4}\right)}
$$

The right-hand side can be computed explicitly, leading to the formulae

$$
S\left(\frac{1}{q}\right)=\left\{\begin{array}{lll}
\frac{-1-i}{\sqrt{q}} & \text { when } q=0 & \bmod 4  \tag{2}\\
\frac{1}{\sqrt{q}} & \text { when } q=1 & \bmod 4 \\
0 & \text { when } q=2 & \bmod 4 \\
\frac{-i}{\sqrt{q}} & \text { when } q=3 & \bmod 4
\end{array}\right.
$$

The other Gauss sums can now be computed by a couple change of variable tricks. Firstly observe that

$$
\begin{equation*}
S\left(\frac{a n^{2}}{q}\right)=S\left(\frac{a}{q}\right) \text { whenever } n \text { is coprime to } q \tag{3}
\end{equation*}
$$

This is simply because the map $r \mapsto n^{2} r$ is a permutation of $\mathbf{Z} / q \mathbf{Z}$ in this case. In particular, we see that $S\left(\frac{a}{q}\right)=S\left(\frac{1}{q}\right)$ whenever $a$ is a non-zero quadratic residue modulo $q$. Next, a simple Fourier series computation shows that if $q$ is square-free, then

$$
\sum_{a=0}^{q-1} S\left(\frac{a}{q}\right)=1
$$

Since $S(0)=1$, we conclude in particular that

$$
\sum_{a=1}^{q-1} S\left(\frac{a}{q}\right)=0
$$

Now suppose $q$ is prime. Then the numbers between 1 and $q-1$ split equally into quadratic residues and quadratic non-residues. We already know that $S\left(\frac{a}{q}\right)=S\left(\frac{1}{q}\right)$ when $a$ is a quadratic residue, and the value of $S\left(\frac{a}{q}\right)$ must be the same for all quadratic non-residues thanks to (3). Thus $S\left(\frac{a}{q}\right)=-S\left(\frac{1}{q}\right)$ for all quadratic nonresidues. In other words we have

$$
\begin{equation*}
S\left(\frac{a}{q}\right)=\left(\frac{a}{q}\right) S\left(\frac{1}{q}\right) \tag{4}
\end{equation*}
$$

whenever $q$ is prime and $a$ is coprime to $q$, where the Jacobi symbol $\left(\frac{a}{q}\right)$ is defined to equal 1 when $a$ is a quadratic residue modulo $p$, and -1 when it is not a quadratic residue modulo $p$.

Next, we observe the identity

$$
S\left(\frac{a}{p q}\right)=S\left(\frac{a p}{q}\right) S\left(\frac{a q}{p}\right)
$$

whenever $p, q$ are coprime. This reflects the fact (from the Chinese remainder theorem) that every residue class $r$ in $\mathbf{Z} / p q \mathbf{Z}$ can be written uniquely as $r=p r_{1}+q r_{2}$ where $0 \leq r_{1}<q$ and $0 \leq r_{2}<p$. Inserting this into the definition of the Gauss sum we obtain the claim. Applying this in particular to $a=1$ and with $p, q$ being distinct odd primes and using (4) we obtain

$$
S\left(\frac{1}{p q}\right)=\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) S\left(\frac{1}{p}\right) S\left(\frac{1}{q}\right)
$$

which when combined with (4) leads to Gauss's famous law of quadratic reciprocity:

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{(p-1)}{2} \frac{(q-1)}{2}}
$$

Another identity in a similar spirit is

$$
S\left(\frac{a}{p}+\frac{b}{q}\right)=S\left(\frac{a}{p}\right) S\left(\frac{b}{q}\right)
$$

whenever $p, q$ are coprime; this is again a consequence of the Chinese remainder theorem, essentially asserting that the distribution of $a n / p$ and $b n / q$ modulo 1 are completely independent of each other. This implies the previous identity, since

$$
S\left(\frac{a p}{q}\right) S\left(\frac{a q}{p}\right)=S\left(\frac{a p}{q}+\frac{a q}{p}\right)=S\left(\frac{a\left(p^{2}+q^{2}\right)}{p q}\right)=S\left(\frac{a(p+q)^{2}}{p q}\right)=S\left(\frac{a}{p q}\right) .
$$

Department of Mathematics, UCLA, Los Angeles, CA 90024
E-mail address: tao@math.ucla.edu

