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S E C T I O N

...........................................

Discrete Subgroups
of Iso (R2)

♣ In Section 9, we obtained a classification of all finite subgroups
of the group of isometries Iso (R2) of R2 by studying symmetry
groups of regular polygons. We saw that such subgroups cannot
contain translations or glides, a fact that is intimately connected
to boundedness of regular polygons. If we want to include trans-
lations and glides in our study, we have to start with unbounded
plane figures and their symmetry groups. It turns out that classi-
fication of these subgroups is difficult unless we assume that the
subgroup G ⊂ Iso (R2) does not contain rotations of arbitrarily
small angle and translations of arbitrarily small vector length. (As
we will see later, we do not have to impose any condition on reflec-
tions and glides.) GroupsG ⊂ Iso (R2) satisfying this condition are
called discrete. In this section we give a complete classification of
discrete subgroups of Iso (R2). Just as cyclic and dihedral groups
can be viewed as orientation-preserving and full symmetry groups
of regular polygons, we will visualize these groups as symmetries
of frieze and wallpaper patterns. Thus, next time you look at a
wallpaper pattern, you should be able to write down generators
and relations for the corresponding symmetry group!

Let G ⊂ Iso (R2) be a discrete group. Assume that G contains
a translation Tv ∈ G that is not the identity (v �� 0). All powers
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of Tv are then contained in G (by the group property): Tk
v ∈ G,

k ∈ Z. Since Tk
v � Tkv, we see that all these are mutually distinct.

It follows that G must be infinite. (The same conclusion holds for
glides, since the square of a glide is a translation.) We see that the
presence of translations or glides makes G infinite. The following
question arises naturally: If we are able to excise the translations
from G, is the remaining “part” of G finite? The significance of an
affirmative answer is clear, since we just classified all finite sub-
groups of Iso (R2). This gives us a good reason to look at translations
first.

Let T be the group of translations in R2. It is clearly a subgroup
of Iso (R2). From now on we agree that for a translation Tv ∈ T ,
we draw the translation vector v from the origin. Associating to Tv
the vector v (just made unique) gives the map

ϕ : T → R2,

defined by

ϕ(Tv) � v, v ∈ R2.

Since

Tv1 ◦ Tv2 � Tv1+v2 , v1, v2 ∈ R2,

and

(Tv)
−1 � T−v, v ∈ R2,

we see that ϕ is an isomorphism. Summarizing, the translations
in Iso (R2) form a subgroup T that is isomorphic with the additive
group R2.

Let G ⊂ Iso (R2) be a discrete group. The translations in G

form a subgroup T � G ∩ T of G. Since G is discrete, so is T.
The isomorphism ϕ : T → R2 maps T to a subgroup denoted by
LG ⊂ R2. This latter group is also discrete in the sense that it does
not contain vectors of arbitrarily small length. By definition, LG is
the group of vectors v ∈ R2 such that the translation Tv is in G. We
now classify the possible choices for LG.

Theorem 5.
Let L be a discrete subgroup of R2. Then L is one of the following:
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1. L � {0};
2. L consists of integer multiples of a nonzero vector v ∈ R2:

L � {kv | k ∈ Z};
3. L consists of integral linear combinations of two linearly indepen-

dent vectors v,w ∈ R2:

L � {kv + lw | k,l ∈ Z}.

Proof.
We may assume that L contains a nonzero vector v ∈ R2. Let l �
R · v be the line through v. Since L is discrete, there is a vector
in l ∩ L of shortest length. Changing the notation if necessary, we
may assume that this vector is v. Let w be any vector in l ∩ L. We
claim that w is an integral multiple of v. Indeed, w � av for some
a ∈ R since w is in l. Writing

a � k + r,

where k is an integer and 0 ≤ r < 1, we see thatw−kv � (a−k)v �
rv is in L. On the other hand, if r �� 0, then the length of rv is less
than that of v, contradicting the minimality of v. Thus r � 0, and
w � kv, an integer multiple of v. If there are no vectors in L outside
of l, then we land in case 2 of the theorem.

Finally, assume that there exists a vector w ∈ L not in l. The
vectors v and w are linearly independent, so that they span a par-
allelogram P. Since P is bounded, it contains only finitely many
elements of L. Among these, there is one whose distance to the
line l is positive, but the smallest possible. By changing w (and P),
we may assume that this vector is w. We claim now that there are
no vectors of L in P except for its vertices. ¬ Assume the contrary
and let z ∈ L be a vector in P. Due to the minimal choice of v and
w, this is possible only if z terminates at a point on the opposite
side of v or w. In the first case, z−w ∈ L would be a vector shorter
than v; in the second, z would be closer to l than w. ¬ Summariz-
ing, we conclude that there are two linearly independent vectors v
and w that span a parallelogram P such that P contains no vectors
in L except for its vertices. Clearly, {kv + lw | k, l ∈ Z} is contained
in L. To land in case 3 we now claim that every vector z in L is an
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integral linear combination of v and w. By linear independence, z
is certainly a linear combination

z � av + bw

of v and w with real coefficients a, b ∈ R. We now write

a � k + r and b � l + s,

where k, l ∈ Z and 0 ≤ r, s < 1. The vector z − kv − lw � rv + sw

is in L and is contained in P. The only way this is possible is if
r � s � 0 holds. Thus z � kv + lw, and we are done.

We now return to our discrete groupG ⊂ Iso (R2) and see that we
have three choices for LG. If LG � {0}, then G does not contain any
translations (or glides, since the square of a glide is a translation).
In this case, G consists of rotations and reflections only. By a result
of the previous section, the rotations in G have the same center,
say, p0. Since G is discrete, it follows that G contains only finitely
many rotations. If Rl ∈ G is a reflection, then l must go through
p0, since otherwise, Rl(p0) would be the center of another rotation
in G. Finally, since the composition of two reflections in G is a
rotation in G, there may be only at most as many reflections in G

as rotations (cf. the proof of Theorem 4). Summarizing, we obtain
that if G is a discrete group of isometries with LG � {0} then G

must be finite. In the second case T, the group of all translations
in G, is generated by Tv, and we begin to suspect that G is the
symmetry group of a frieze pattern. Finally, in the third case T

is generated by Tv and Tw, and T is best viewed by its ϕ-image
LG � {kv + lw | k, l ∈ Z} in R2. We say that LG is a lattice in R2 and
G is a (2-dimensional) crystallographic group. Since any wallpaper
pattern repeats itself in two different directions, we see that their
symmetry groups are crystallographic.

We now turn to the process of “excising” the translation part
from G. To do this, we need some preparations. Recall that at the
discussion of translations we agreed to draw the vectors v from
the origin so that the translation Tv by the vector v ∈ R2 acts on
p ∈ R2 by Tv(p) � p + v. Now given any linear transformation
A : R2 → R2 (that is, A(v1 + v2) � A(v1) + A(v2), v1, v2 ∈ R2,
and A(rv) � rA(v), r ∈ R, v ∈ R2), we have the commutation rule
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A ◦ Tv � TA(v) ◦ A. Indeed, evaluating the two sides at p ∈ R2, we
get

(A ◦ Tv)(p) � A(Tv(p)) � A(p + v) � A(p) + A(v)

and

(TA(v) ◦ A)(p) � TA(v)(A(p)) � A(p) + A(v).

Let O(R2) denote the group of isometries in Iso (R2) that leave
the origin fixed. O(R2) is called the orthogonal group. From the
classification of the plane isometries, it follows that the elements
of O(R2) are linear.

Remark.
♠ We saw above that a direct isometry in O(R2) is a rotation
Rθ. These rotations form the special orthogonal group SO(R2), a
subgroup of O(R2). Associating to Rθ the complex number z(θ)

establishes an isomorphism between SO(R2) and S1. Any oppo-
site isometry in O(R2) can be written as a rotation followed by
conjugation. Thus topologically O(R2) is the disjoint union of two
circles.

♣Occasionally, it is convenient to introduce superscripts± to in-
dicate whether the isometries are direct or opposite. Thus Iso +(R2)

denotes the set of direct isometries in Iso (R2). Note that it is a sub-
group, since the composition and inverse of direct isometries are
direct. Iso−(R2) is not a subgroup but a topological copy of Iso+(R2).

♥ The elements of O(R2) are linear, so that the commutation
rule above applies. We now define a homomorphism

ψ : Iso (R2) → O(R2)

as follows: Let S ∈ Iso (R2) and denote by v the vector that termi-
nates at S(0). The composition (Tv)

−1 ◦ S fixes the origin so that it
is an element of O(R2). We define ψ(S) � (Tv)

−1 ◦ S. To prove that
ψ is a homomorphism, we first write (Tv)−1 ◦ S � U ∈ O(R2), so
that S � Tv ◦ U . This decomposition is unique in the sense that if
S � Tv′ ◦U ′ with v′ ∈ R2 and U ′ ∈ O(R2), then v � v′ and U � U ′.
Indeed, Tv ◦ U � Tv′ ◦ U ′ implies that (Tv′)−1 ◦ Tv � U ′ ◦ U−1. The
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right-hand side fixes the origin so that the left-hand side, which is
a translation, must be the identity. Uniqueness follows.

Using the notation we just introduced, we haveψ(S) � U , where
S � Tv ◦ U . Now let S1 � Tv1 ◦ U1 and S2 � Tv2 ◦ U2, where
v1, v2 ∈ R2 and U1, U2 ∈ O(R2). For the homomorphism property,
we need to show that ψ(S2 ◦ S1) � ψ(S2) ◦ ψ(S1). By definition,
ψ(S1) � U1 and ψ(S2) � U2, so that the right-hand side is U2 ◦ U1.
As for the left-hand side, we first look at the composition

S2 ◦ S1 � Tv2 ◦ U2 ◦ Tv1 ◦ U1.

Using the commutation rule for the linear U2, we have U2 ◦ Tv1 �
TU2(v1) ◦ U2. Inserting this, we get

S2 ◦ S1 � Tv2 ◦ TU2(v1) ◦ U2 ◦ U1.

Taking ψ of both sides amounts to deleting the translation part:

ψ(S2 ◦ S1) � U2 ◦ U1.

Thus ψ is a homomorphism.
ψ is onto since it is identity on O(R2) ⊂ Iso (R2). The kernel of

ψ consists of translations:

ker ψ � T .
In particular, T ⊂ Iso (R2) is a normal subgroup. Having con-
structed ψ : Iso (R2) → O(R2), we return to our discrete group
G ⊂ Iso (R2). The ψ-image of G is called the point-group of G, de-
noted by Ḡ � ψ(G). The kernel of ψ|G is all translations in G, that
is, T. Thus, we have the following:

ψ|G : G → Ḡ ⊂ O(R2)

and

ker(ψ|G) � T.

For nontrivial LG, the point-group Ḡ interacts with LG in a
beautiful way:

Theorem 6.
Ḡ leaves LG invariant.
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Proof.
Let U ∈ Ḡ and v ∈ LG. We must show that U(v) ∈ LG. Since
U ∈ Ḡ, there exists S ∈ G, with S � Tw ◦ U for some w ∈ R2. The
assumption v ∈ LG, means Tv ∈ G, and what we want to conclude,
U(v) ∈ LG, means TU(v) ∈ G. We compute

TU(v) � TU(v) ◦ Tw ◦ (Tw)−1

� Tw ◦ TU(v) ◦ (Tw)−1

� Tw ◦ U ◦ Tv ◦ U−1 ◦ (Tw)−1

� S ◦ Tv ◦ S−1 ∈ G,

where the last but one equality is because of the commutation
relation

U ◦ Tv � TU(v) ◦ U

as established above. The theorem follows.

Ḡ is discrete in the sense that is does not contain rotations with
arbitrarily small angle. This follows from Theorem 6 if LG is non-
trivial. If LG is trivial, then by a result of the previous section, G
is finite, and so is its (isomorphic) image Ḡ under ψ. Since Ḡ is
discrete and fixes the origin, it must be finite! Indeed, by now this
argument should be standard. Let Rθ ∈ Ḡ with θ being the smallest
positive angle. Then any rotation in Ḡ is a multiple of Rθ. More-
over, using the division algorithm, we have 2π � nθ+ r, 0 ≤ r < θ,
n ∈ Z, and r must reduce to zero because of minimality of θ. Thus
θ � 2π/n, and the rotations form a cyclic group of order n. Finally,
there cannot be infinitely many reflections, since otherwise their
axes could get arbitrarily close to each other, and composing any
two could give rotations of arbitrarily small angle. We thus accom-
plished our aim. Ḡ gives a finite subgroup in O(R2) consisting of
rotations and reflections only. In particular, if LG � {0}—that is,
if G contains no nontrivial translations—then the kernel of ψ|G is
trivial and so ψ|G maps G isomorphically onto Ḡ. In particular, G
is finite. By Theorem 4 of Section 9, G is cyclic or dihedral.
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We are now ready to classify the possible frieze patterns, of which
there are seven. According to Theorem 6, a frieze group G keeps
the line c through LG invariant, and the group of translations T in
G is an infinite cyclic subgroup generated by a shortest translation,
say, τ, in the direction of c. The line c is called the “center” of the
frieze group. In addition to T, the only nontrivial direct isometries
are rotations with angle π, called “half-turns,” and their center must
be on c. The only possible opposite isometries are reflection to c,
reflections to lines perpendicular to c, and glides along c. In the
classification below we use the following notations: If G contains a
half-turn, we denote its center by p ∈ c. If G does not contain any
half-turns, but contains reflections to lines perpendicular to c, the
axis of reflection is denoted by l, and p is the intersection point of
l and c. Otherwise p is any point on c. Let pn � τn(p), n ∈ Z, and
m � the midpoint of the segment connecting p0 and p1. Finally,
let mn � τn(m), the midpoint of the segment connecting pn and
pn+1 (Figure 10.1).

We are now ready to start. First we classify the frieze groups that
contain only direct isometries:

1. G � T � 〈τ〉, so that G contains1 no half-turns, reflections or
glide reflections.

2. G � 〈τ, Hp〉. Aside from translations, G contains the half-turns
τn ◦ Hp. For n � 2k even, τ2k ◦ Hp has center at pk, and for
n � 2k + 1 odd, τ2k+1 ◦ Hp has center at mk.

It is not hard to see that these are all the frieze groups that con-
tain only direct isometries. We now allow the presence of opposite
isometries.

3. G � 〈τ, Rc〉. Since R2
c � I and τ ◦ Rc � Rc ◦ τ, aside from T, this

group consists of glides τn ◦ Rc mapping p to pn.

Figure 10.1

c

p m p1

1IfG ⊂ Iso (R2), then 〈G〉 denotes the smallest subgroup in Iso (R2) that containsG. We say thatG generates
〈G〉 (cf. “Groups” in Appendix B).
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4. G � 〈τ, Rl〉. Since R2
l � I and Rl ◦ τ � τ−1 ◦ Rl, aside from T, G

consists of reflections τn ◦ Rl. The axes are perpendicular to c,
and according to whether n � 2k (even) or n � 2k + 1 (odd),
the intersections are pk or mk.

5. G � 〈τ, Hp, Rc〉. We have Hp ◦ Rc � Rl ◦ Rc ◦ Rc � Rl ∈ G. In
addition to this and τ, G includes the glides τn ◦ Rc (sending p
to pn) and τn ◦ Rl discussed above.

6. G � 〈τ, Hp, Rl′ 〉. Then l′ must intersect c perpendicularly at the
midpoint of p and mk, for some k ∈ Z.

7. G � 〈Gc,v〉 is generated by the glide Gc,v with G2
c,v � τ.

Figure 10.2 depicts the seven frieze patterns. (The pictures were
produced with Kali (see Web Site 2), written by Nina Amenta
of the Geometry Center at the University of Minnesota.) Which
corresponds to which in the list above?

The fact that the point-group Ḡ leaves LG invariant imposes a
severe restriction on G if LG is a lattice, the case we turn to next.

Figure 10.2
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Figure 10.3
θ

θ

w

R   (v)

v

Crystallographic Restriction.
Assume thatG is crystallographic. Let Ḡ denote its point-group. Then

every rotation in Ḡ has order 1,2,3,4, or 6, and Ḡ is Cn or Dn for some
n � 1,2,3,4, or 6.

Proof.
As usual, letRθ be the smallest positive angle rotation in Ḡ, and let v
be the smallest length nonzero vector in LG. Since LG is Ḡ-invariant,
Rθ(v) ∈ LG. Consider w � Rθ(v) − v ∈ LG (Figure 10.3).

Since v has minimal length, |v| ≤ |w|. Thus,

θ ≥ 2π/6,

and so Rθ has order ≤ 6. The case θ � 2π/5 is ruled out since
R2
θ (v) + v is shorter than v (Figure 10.4).

Figure 10.4
π/5

θ

θ

R   (v)

v

2

R   (v)
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The first statement follows. The second follows from the
classification of finite subgroups of Iso (R2) in the previous
section.

Remark.
For an algebraic proof of the crystallographic restriction, consider
the trace tr (Rθ) of Rθ ∈ Ḡ, 0 < θ ≤ π. With respect to a basis in
LG, the matrix of Rθ has integral entries (Theorem 6). Thus, tr (Rθ)
is an integer. On the other hand, with respect to an orthonormal
basis, the matrix of Rθ has diagonal entries both equal to cos(θ). In
particular, tr (Rθ) � 2 cos(θ). Thus, 2 cos(θ) is an integer, and this
is possible only for n � 2, 3, 4, or 6.

Example
If ω � z(2π/n) is a primitive nth root of unity, then Z[ω] is a
lattice iff n � 3, 4, or 6. Indeed, the rotation R2π/n leaves Z[ω]
invariant, since it is multiplication by ω. By the crystallographic
restiction, n � 3, 4, or 6. How do the tesselations look for n � 3
and n � 6? �

The absence of order-5 symmetries in a lattice must have
puzzled some ancient ornament designers. We quote here from
Hermann Weyl’s Symmetry: “The Arabs fumbled around much with
the number 5, but they were of course never able honestly to insert
a central symmetry of 5 in their ornamental designs of double infi-
nite rapport. They tried various deceptive compromises, however.
One might say that they proved experimentally the impossibility
of a pentagon in an ornament.”

Armed with the crystallographic restriction, we now have the te-
dious task of considering all possible scenarios for the point-group
Ḡ and its relation to LG. This was done in the nineteenth century
by Fedorov and rediscovered by Polya and Niggli in 1924. A de-
scription of the seventeen crystallographic groups that arise are
listed as follows:

Generators for the 17 Crystallographic Groups

1. Two translations.
2. Three half-turns.
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3. Two reflections and a translation.
4. Two parallel glides.
5. A reflection and a parallel glide.
6. Reflections to the four sides of the rectangle.
7. A reflection and two half-turns.
8. Two perpendicular glides.
9. Two perpendicular reflections and a half-turn.

10. A half-turn and a quarter-turn.
11. Reflections in the three sides of a (π/4, π/4, π/2) triangle.
12. A reflection and a quarter-turn.
13. Two rotations through 2π/3.
14. A reflection and a rotation through 2π/3.
15. Reflections in the three sides of an equilateral triangle.
16. A half-turn and a rotation through 2π/3.
17. Reflections is in the three sides of a (π/6, π/3, π/2) triangle.

Remark.
The following construction sheds some additional light on the
geometry of crystallographic groups. Let G be crystallographic
and assume that G contains rotations other than half-turns. Let
R2α(p) ∈ G, 0 < α < π/2, be a rotation with integral π/α (cf. the
proof of Theorem 4 of Section 9). Let R2β(q) ∈ G, 0 < β < π/2,
be another rotation with integral π/β such that d(p, q) is minimal.
(R2β(q) exists since G is crystallographic.) Let l denote the line
through p and q. Write R2α(p) � Rl′ ◦ Rl, where l′ meets l at p and
the angle from l to l′ is α. Similarly, R2β(q) � Rl ◦Rl′′ , where l′′ meets
l at q and the angle from l′′ to l is β. Since α+β < π, the lines l′ and
l′′ intersect at a point, say, r. In fact, r is the center of the rotation
R2γ(r) � (R2α(p) ◦ R2β(q))

−1 � Rl′′ ◦ Rl′ . Since α, β, and γ are the
interior angles of the triangle %pqr, we have α+ β+ γ � π. On the
other hand, since G is discrete, π/γ is rational. It is easy to see that
minimality of d(p, q) implies that π/γ is integral. We obtain that

α

π
+ β

π
+ γ

π
� 1,

where the terms on the left-hand side are reciprocals of integers.
Since π/α, π/β ≥ 3 (and π/γ ≥ 2), the only possibilities are α �
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Figure 10.5

β � γ � π/3; α � β � π/4, γ � π/2; and α � π/6, β � π/3, γ �
π/2. (Which corresponds to which in the list above?)

As noted above, these groups can be visualized by patterns
covering the plane with symmetries prescribed by the acting crys-
tallographic group. Figure 10.5 shows a sample of four patterns
(produced with Kali).

Symmetric patterns2 date back to ancient times. They appear
in virtually all cultures; on Greek vases, Roman mosaics, in the
thirteenth century Alhambra at Granada, Spain, and on many other
Muslim buildings.

2For a comprehensive introduction see B. Grünbaum and G.C. Shephard, Tilings and Patterns, Freeman,
1987.
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To get a better view of the repetition patterns, we introduce the
concept of fundamental domain. First, given a discrete group G ⊂
Iso (R2), a fundamental set for G is a subset F of R2 which contains
exactly one point from each orbit

G(p) � {S(p) | S ∈ G}, p ∈ R2.

A fundamental domain F0 for G is a domain (that is, a connected
open set) such that there is a fundamental set F between F0 and
its closure3 F̄0; that is, F0 ⊂ F ⊂ F̄0, and the 2-dimensional area of
the boundary ∂F0 � F̄0 − F0 is zero.

The simplest example of a fundamental set (domain) is given by
the translation group G � T � 〈Tv, Tw〉. In this case, a fundamen-
tal domain F0 is the open parallelogram spanned by v and w. A
fundamental set F is obtained from F0 by adding the points tv and
tw, 0 ≤ t < 1. By the defining property of the fundamental set,
the “translates” S(F), S ∈ G, tile4 or, more sophisticatedly, tessellate
R2. (Numerous tessellations appear in Kepler’s Harmonice Mundi,
which appeared in 1619.) If a pattern is inserted in F , translating
it with G gives the wallpaper patterns that you see. You are now
invited to look for fundamental sets in Figure 10.5!

Problems

1. Prove directly that any plane isometry that fixes the origin is linear.

2. Identify the frieze group that corresponds to the pattern in Figure 10.6.

3. Let L ⊂ R2 be a lattice. Show that half-turn around the midpoint of any two
points of L is a symmetry of L.

4. Identify the discrete group G generated by the three half-turns around the
midpoints of the sides of a triangle.

Figure 10.6

3See “Topology” in Appendix C.
4We assume that the tiles can be turned over; i.e., they are decorated on both sides.



Springer-Verlag Electronic Production toth 12:27 p.m. 2 · v · 2002

Web Sites 121

Web Sites

1. www.geom.umn.edu/docs/doyle/mpls/handouts/node30.html

2. www.geom.umn.edu/apps/kali/start.html

3. www.math.toronto.edu/∼coxeter/art-math.html

4. www.texas.net/escher/gallery

5. www.suu.edu/WebPages/MuseumGaller/Art101/aj-webpg.htm

6. www.geom.umn.edu/apps/quasitiler/start.html




