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Part IV

Branches of Mathematics

IV.1 Algebraic Numbers
Barry Mazur

The roots of our subject go back to ancient Greece while
its branches touch almost all aspects of contemporary
mathematics. In 1801 the Disquisitiones Arithmeticae
of carl friedrich gauss [VI.26] was first published, aT&T note: check

style later.
“founding treatise,” if ever there was one, for the mod-
ern attitude toward number theory. Many of the still
unachieved aims of current research can be seen, at
least in embryonic form, as arising from Gauss’s work.

This article is meant to serve as a companion to the
reader who might be interested in learning, and think-
ing about, some of the classical theory of algebraic
numbers. Much can be understood, and much of the
beauty of algebraic numbers can be appreciated, with a
minimum of theoretical background. I recommend that
readers who wish to begin this journey carry in their
backpacks Gauss’s Disquisitiones Arithmeticae as well
as Davenport’s The Higher Arithmetic (1992), which is
one of the gems of exposition of the subject, and which
explains the founding ideas clearly and in depth using
hardly anything more than high-school mathematics.

1 The Square Root of 2

The study of algebraic numbers and algebraic integers
begins with, and constantly reverts back to, the study of
ordinary rational numbers and ordinary integers. The
first algebraic irrationalities occurred not so much as
numbers but rather as obstructions to simple answers
to questions in geometry.

That the ratio of the diagonal of a square to the length
of its side cannot be expressed as a ratio of whole num-
bers is purported to be one of the vexing discoveries
of the early Pythagoreans. But this very ratio, when
squared, is 2:1. So we might—and later mathematicians
certainly did—deal with it algebraically. We can think
of this ratio as a cipher, about which we know nothing

beyond the fact that its square is 2 (a viewpoint taken
toward algebraic numbers by kronecker [VI.48], as we
shall see below). We can write

√
2 in various forms, e.g.,

√
2 = |1− i|, (1)

and we can think of 1− i = 1−e2π i/4 as the world’s sim-
plest trigonometric sum; we shall see generalizations of
this for all quadratic surds below. We can also view

√
2

as a limit of various infinite sequences, one of which is
given by the elegant continued fraction [III.22]

√
2 = 1+ 1

2+ 1
2+. . .

. (2)

Directly connected to this continued fraction (2) is the
Diophantine equation

2X2 − Y 2 = ±1 (3)

known as the Pell equation. There are infinitely many
pairs of integers (x,y) satisfying this equation, and
the corresponding fractionsy/x are precisely what you
get by truncating the expression in (2). For example, the
first few solutions are (1,1), (2,3), (5,7), and (12,17),
and

3
2 = 1+ 1

2 = 1.5,

7
5 = 1+ 1

2+ 1
2

= 1.4,

17
12 = 1+ 1

2+ 1
2+ 1

2

= 1.416 . . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

Replace the ±1 on the right-hand side of (3) by zero
and you get 2X2 − Y 2 = 0, an equation all of whose
positive real-number solutions (X, Y) have the ratio
Y/X = √2, so it is easy to see that the sequence of
fractions (4) (these being alternately larger and smaller
than

√
2 = 1.414 . . . ) converges to

√
2 in the limit. Even

more striking is that (4) is a list of fractions that best
approximate

√
2. (A rational number a/d is said to

be a best approximant to a real number α if a/d is
closer to α than any rational number of denomina-
tor smaller than or equal to d.) To deepen the pic-
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Figure 1 The outer rectangle has its height-to-width ratio
equal to the golden mean. If you remove a square from it as
indicated in the figure, you are left with a rectangle that has
the golden mean as its width-to-height ratio. This procedure
is of course repeatable.

ture, consider another important infinite expression,
the conditionally convergent series

log(
√

2+ 1)√
2

= 1− 1
3 − 1

5 + 1
7 + 1

9 + · · · ± 1
n + · · · . (5)

Here the n range over positive odd numbers, and the
sign of the term ±1/n is plus if n has a remainder ofPUP: a comma

before this ‘is’
would not be good. 1 or 7 when divided by 8, and it is minus if n has a

remainder of 3 or 5. This elegant formula (5), which you
are invited to “check out” at least to one digit accuracy
with a calculator, is an instance of the powerful and
general theory of analytic formulas for special values
of L-functions [III.49], which plays the role of a bridge
between the more algebraic and the more analytic sides
of the story. When we allude to this, below, we will call
it “the analytic formula,” for short.

2 The Golden Mean

If you are looking for quadratic irrationalities that have
been the subject of geometric fascination through the
ages, then

√
2 has a strong competitor in the num-

ber 1
2 (1 +

√
5), known as the golden mean. The ratio

1
2 (1 +

√
5):1 gives the proportions of a rectangle with

the property that when you remove a square from it, as
in figure 1, you are left with a smaller rectangle whose

sides are in the same proportion. Its corresponding
trigonometric sum description is

1
2 (1+

√
5) = 1

2 + cos 2
5π − cos 4

5π. (6)

Its continued-fraction expansion is

1
2 (1+

√
5) = 1+ 1

1+ 1
1+. . .

, (7)

where the sequence of fractions obtained by successive
truncations of this continued fraction,

y
x = 1

1 ,
2
1 ,

3
2 ,

5
3 ,

8
5 ,

13
8 ,

21
13 ,

34
21 , . . . , (8)

is a sequence of best rational-number approximants to
1
2 (1+

√
5) = 1.618033988749894848 . . . ,

where “best” has the sense already mentioned. For
example, the fraction

34
21
= 1+ 1

1+ 1
1+ 1

1+ 1

1+ 1

1+ 1

1+ 1
1

equals 1.619047619047619047 . . . and is closer to the
golden mean than any fraction with denominator less
than 21.

Nevertheless, the exclusive appearance of 1s in this
continued fraction1 can be used to show that, among
all irrational real numbers, the golden mean is the
number that is, in a specific technical sense, least well
approximated by rational numbers.

Readers familiar with the sequence of Fibonacci num-
bers will recognize them in the successive denomina-
tors of (8), and in the numerators as well. The analogue
to equation (3) is PUP: big thanks to

proofreader for
spotting incorrect
equation
cross-references in
this article.

X2 +XY − Y 2 = ±1. (9)

This time, if you replace the ±1 on the right-hand side
of the equation by 0, you get the equation X2 + XY −
Y 2 = 0, whose positive real-number solutions (X, Y)
have the ratio Y/X = 1

2 (1 +
√

5), that is, the golden
mean. And now the numerators and denominatorsy , x
that appear in (8) run through the positive integral
solutions of (9). The analogue of formula (5) (the “ana-
lytic formula”) for the golden mean is the conditionally
convergent infinite sum

2 log( 1
2 (1+

√
5))√

5
= 1− 1

2 − 1
3 + 1

4 + 1
6 + · · · ± 1

n + · · · ,
(10)

where the n range over positive integers not divisible
by 5, and the sign of ±1/n is plus if n has a remainder PUP: again, the

proofreader’s
suggested comma
would definitely
not be a good
addition before
this ‘is’.

1. The continued-fraction expansion of any real quadratic algebraic
number has an eventually recurring pattern in its entries, as is vividly
exhibited by the two examples (2) and (7) given above.
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of ±1 when divided by 5, and minus otherwise.

What governs the choice of the plus terms and minus

terms is whether or not n is a quadratic residue mod-

ulo 5. Here is a brief explanation of this terminology.

Ifm is an integer, two integers a, b are said to be con-

gruent modulo m (in symbols we write a ≡ b modm)

if the difference a−b is an integral multiple ofm; if a,

b, and m are positive numbers, it is equivalent to ask

that a and b have the same “remainder” (sometimes

also called “residue”) when each is divided by m (see

modular arithmetic [III.60]). An integer a relatively

prime tom is called a quadratic residue modulom if a
is congruent to the square of some integer, modulom;

otherwise it is called a quadratic nonresidue modulom.

So, 1,4,6,9, . . . are quadratic residues modulo 5, while

2,3,7,8, . . . are quadratic nonresidues modulo 5.

A generalization of equations (5) and (10) (the “ana-

lytic formula for the L-function attached to quadratic

Dirichlet characters”) gives a very surprising formula

for the conditionally convergent sum of terms ±1/n,

wheren runs through positive integers relatively prime

to a fixed integer and the sign of ±1/n corresponds to

whethern is a quadratic residue, or nonresidue modulo

that integer.

3 Quadratic Irrationalities

The quadratic formula

X = −b ±
√
b2 − 4ac
2a

gives the solutions (usually two) to the general quad-

ratic polynomial equation aX2+bX+c = 0 as a rational

expression of the number
√
D, where D = b2 − 4ac

is known as the discriminant of the polynomial aX2 +
bX+ c, or, equivalently, of the corresponding homoge-

neous quadratic form [III.75] aX2+bXY +cY 2. This

formula introduces many irrational numbers: Plato’s

dialogue “Theaetetus” has the young Theaetetus cred-

ited with the discovery that
√
D is irrational whenever

D is a natural number that is not a perfect square. The

curious switch, from initially perceiving an obstruction

to a problem to eventually embodying this obstruction

as a number or an algebraic object of some sort that we

can effectively study, is repeated over and over again,

in different contexts, throughout mathematics. Much

later, complex quadratic irrationalities also made their

appearance. Again these were not at first regarded as

“numbers as such,” but rather as obstructions to the

solution of problems. Nicholas Chuquet, for example,

in his 1484 manuscript, Le Triparty, raised the ques-
tion of whether or not there is a number whose triple
is four plus its square and he comes to the conclu-
sion that there is no such number because the quad-
ratic formula applied to this problem yields “impossi-
ble” numbers, i.e., complex quadratic irrationalities in
our terminology.2

For any real quadratic (“integral”) irrationality there
is a discussion along similar lines to the ones we
have just given (expressions (1)–(5) for

√
2 and expres-

sions (6)–(10) for 1
2 (1+

√
5)). For complex irrational-

ities, there is also such a theory, but with interest-
ing twists. For one thing, we do not have anything
directly comparable to continued-fraction expansions
for a complex quadratic irrationality. In fact, the sim-
ple, but true, answer to the problem of how to find an
infinite number of rational numbers that converge to
such an irrationality is that you cannot! Correspond-
ingly, the analogue of the Pell equation has only finitely
many solutions. As a consolation, however, the appro-
priate “analytic formula” has a simpler sum, as we will
see below.

Let d be any square-free integer, positive or negative.
Associated with d is a particularly important number
τd, defined as follows. If d is congruent to 1 mod 4 (that
is, if d− 1 is a multiple of 4), then τd = 1

2 (1 +
√
d);

otherwise, τd =
√
d. We will refer to these quadratic

irrationalities τd as fundamental algebraic integers of
degree 2. The general notion of an “algebraic integer”
is defined in section 11. An algebraic integer of degree
two is simply a root of a quadratic polynomial of the
form X2 + aX + b with a, b ordinary integers. In the
first case (when d ≡ 1 modulo 4), τd is a root of the
polynomial X2 −X + 1

4 (1− d) and in the second it is
a root of X2 − d. The reason special names are given
to these quadratic irrationalities is that any quadratic
algebraic integer is a linear combination (with ordi-
nary integers as coefficients) of 1 and one of these
fundamental quadratic algebraic integers.

4 Rings and Fields

I think that one of the big early advances in mathe-
matics is the now-current, universal recognition of the
importance of studying the properties of collections of
mathematical objects, and not just the objects in iso-
lation. A ring R of complex numbers is a collection of

2. bombelli [VI.8], in the sixteenth century, would refer to irrational
square roots, of positive or of negative numbers, as “deaf” (reminis-
cent of the word surd that is still in use) and as “numbers impossible
to name.”
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−2 + i −1 + i + i 1 + i 2 + i

−2 − i −1 − i − i 1 − i 2 − i

−2 −1 0 1 2

Figure 2 The Gaussian integers are the vertices of
this lattice of squares tiling the complex plane.

them that contains 1 and is closed under the opera-
tions of addition, subtraction, and multiplication. That
is, if a, b are any two numbers in R, a±b and ab must
also be in R. If such a ring R has the further property
that it is closed under division by nonzero elements
(i.e., if a/b is again in R whenever a and b are, and
b �= 0), then we say that R is a field. (These concepts
are discussed further in fields [I.3 §2.2] and rings,
ideals, and modules [III.83].) The ring Z of ordinary
integers, {0,±1,±2, . . . } is our “founding example” of a
ring; visibly, it is the smallest ring of complex numbers.

The collection of all real or complex numbers that are
integral linear combinations of 1 and τd is closed under
addition, subtraction, and multiplication, and is there-
fore a ring, which we denote by Rd. That is, Rd is the
set of all numbers of the form a+ bτd where a and b
are ordinary integers. These ringsRd are our first, basic,
examples of rings of algebraic integers beyond that pro-
totype, Z, and they are the most important rings that
are receptacles for quadratic irrationalities. Every quad-
ratic irrational algebraic integer is contained in exactly
one Rd.

For example, when d = −1 the corresponding ring
R−1, usually referred to as the ring of Gaussian integers,
consists of the set of complex numbers whose real and
imaginary parts are ordinary integers. These complex
numbers may be visualized as the vertices of the infi-
nite tiling of the complex plane by squares whose sides
have length 1 (see figure 2).

When d = −3 the complex numbers in the corre-
sponding ring R−3 may be visualized as the vertices of

−1 +   −3τ −3τ

−1 0 +1

1 −   −3τ−   −3τ

Figure 3 The elements of the ring R−3 are the vertices of
this lattice of hexagons tiling the complex plane.

the regular hexagonal tiling of the complex plane (see
figure 3).

With the rings Rd in hand, we may ask ring-theoretic
questions about them, and here is some of the stan-
dard vocabulary useful for this. A unit u in a given ring
R of complex numbers is a number in R whose recip-
rocal 1/u is also in R; a prime (or synonymously, an
irreducible) element in R is a nonunit that cannot be
written as the product of two nonunits in R. A ring of
complex numbers R has the unique factorization prop-
erty if every nonzero, nonunit, algebraic number in R
can be expressed as a product of prime elements in
exactly one way (where two factorizations are counted
as the same if one can be obtained from the other by
rearranging the order in which the primes appear and
multiplying them by units).

In the prototype ring Z of ordinary integers, the only
units are ±1. The fundamental fact that any ordinary
integer greater than 1 can be uniquely expressed as
a product of (positive) prime numbers (that is, that Z

enjoys the unique factorization property) is crucial for
much of the number theory done with ordinary inte-
gers. That this unique factorization property for inte-
gers actually required proof was itself a hard-won real-
ization of Gauss, who also provided its proof (see the
fundamental theorem of arithmetic [V.16]).

It is easy to see that there are only four units in the
ring R−1 of Gaussian integers, namely ±1 and ±i; mul-
tiplication by any of these units effects a symmetry
of the infinite square tiling (figure 2 above). There are
only six units in the ring R−3, namely ±1, ± 1

2 (1+
√−3)

and ± 1
2 (1−

√−3); multiplication by any of these units
results in a symmetry of the infinite hexagonal tiling
(figure 3 above).
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Fundamental to understanding the arithmetic of Rd
is the following question: which ordinary prime num-
bers p remain prime in Rd and which ones factorize
into products of primes in Rd? We will see shortly that
if a prime number does factorize in Rd, it must be
expressible as the product of precisely two prime fac-
tors. For example, in the ring of Gaussian integers, R−1,
we have the factorizations

2 = (1+ i)(1− i),

5 = (1+ 2i)(1− 2i),

13 = (2+ 3i)(2− 3i),

17 = (1+ 4i)(1− 4i),

29 = (2+ 5i)(2− 5i),
...

where all the Gaussian integer factors in brackets abovePUP: again we’d
like to keep
‘brackets’ here,
instead of
changing to
‘parentheses’. OK?

are prime in the ring of Gaussian integers.
Let us say that an odd prime p splits in R−1 if it

factorizes into a product of at least two primes and
remains prime if it does not do so. As we shall soon
see, the officially agreed-upon definitions of splitting
and remaining prime for more general rings of alge-
braic integers (even ones of the form Rd) are worded
slightly, but very significantly, differently from the way
we have just defined these concepts in the ring R−1

of Gaussian integers. (Note that we have excluded the
prime p = 2 from the above dichotomy. This is because
2 ramifies in R−1; for a discussion of this concept see
section 7 below.) In any event, there is an elementary
computable rule that tells us, for any Rd, which primes
p split and which remain prime in this agreed sense.
The rule depends upon the residue of p modulo 4d:
the reader is invited to guess it for the ring of Gaussian
integers given the data just displayed above. In general,
an elementary computable rule that says which primes
split and which do not in a ring of algebraic integers
such as Rd is referred to as a splitting law for the ring
of algebraic integers in question.

5 The Rings Rd of Quadratic Integers

There is a very important “symmetry,” or automor-
phism [I.3 §4.1], defined on the ring Rd. It sends

√
d to

−√d, keeps all ordinary integers fixed, and more gener-
ally, for rational numbersu andv , it sendsα = u+v√d
to what we may call its algebraic conjugate α′ = u −
v
√
d. (The word “algebraic” is to remind you that this

is not necessarily the same as the complex-conjugate
symmetry of the complex numbers!)

You can immediately work out the formulas for this
algebraic conjugation operation on the fundamental
quadratic irrationalities τd: if d is not congruent to 1
modulo 4, then τd =

√
d, so obviously τ′d = −τd, while

if d is congruent to 1 modulo 4, then τd = 1
2 (1 +

√
d)

and τ′d = 1
2 (1 −

√
d) = 1 − τd. This symmetry α �→ α′

respects all algebraic formulas. For example, to work
out the algebraic conjugate of a polynomial expression
like αβ + 2γ2, where α, β, and γ are numbers in Rd,
you just replace each individual number by its algebraic
conjugate, obtaining the expression α′β′ + 2γ′2.

The most telling integer quantity attached to a num-
berα = x+yτd inRd is its normN(α), which is defined
to be the product αα′. This equals x2 − dy2 when
τd =

√
d andx2+xy− 1

4 (d−1)y2 when τd = 1
2 (1+

√
d).

The norm turns out to be multiplicative, meaning that
N(αβ) = N(α)N(β), as you can directly check by mul-
tiplying out the formula for the norm of each factor and
comparing with the norm of the product. This gives us
a useful tactic for trying to factorize algebraic num-
bers in Rd, and offers criteria for determining whether
a number α in Rd is a unit, and whether it is prime in
Rd. In fact, an element α ∈ Rd is a unit if and only if
N(α) = αα′ = ±1; in other words, the units are given
by the integral solutions to the equations

X2 − dY 2 = ±1 (11)

or
X2 +XY − 1

4 (d− 1)Y 2 = ±1 (12)

following the two cases. Here is the proof of this. If
α = x+yτd is a unit in Rd, then its reciprocal, β = 1/α,
must also be in Rd, and, of course, we have αβ = 1.
Applying the norm to both sides of this equation and
using the multiplicative property discussed above, we
see that N(α) and N(β) are reciprocal ordinary inte-
gers. Therefore, they are either both equal to +1 or
both equal to −1. This shows that (x,y) is a solution
to whichever of equation (11) or (12) is appropriate. In
the other direction, ifN(α) = αα′ = ±1, then the recip-
rocal of α is simply ±α′. This is in Rd so α is indeed a
unit in Rd.

These homogeneous quadratic forms, the left-hand
sides of equations (11) and (12) (which generalize for-
mulas (3) and (9)), play an important role; let us refer
to whichever of them is relevant to Rd as the funda-
mental quadratic form for Rd, and to its discriminant
D as the fundamental discriminant. (D is equal to d
if d is congruent to 1 modulo 4 and to 4d otherwise.)
When d is negative there are only finitely many units
(if d < −3 the only ones are ±1) but when d is positive,
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so that Rd consists entirely of real numbers, there are
infinitely many. The ones that are greater than 1 are
powers of a smallest such unit, εd, and this is called
the fundamental unit.

For example, when d = 2 the fundamental unit, ε2,
is 1 + √2, and when d = 5 it is the golden mean, ε5 =
1
2 (1 +

√
5). Since any power of a unit is again a unit,

we immediately have a machine for producing infinitely
many units from any single one. For example, taking
powers of the golden mean, we get

ε5 = 1
2 (1+

√
5), ε2

5 = 1
2 (3+

√
5),

ε3
5 = 2+√5, ε4

5 = 1
2 (7+ 3

√
5),

ε5
5 = 1

2 (11+ 5
√

5),

all of which are units in R5. The study of these fun-
damental units was already under way in the twelfth
century in India, but in general their detailed behavior
as d varies still holds mysteries for us today. For exam-
ple, there is a deep theorem of Hua (1942) that tells
us that εd < (4e2d)

√
d (for a proof of it along with a

historical discussion of such estimates, see chapters 3
and 8 in Narkiewicz (1973)). There are examples of d
that come close to attaining that bound, but we still
do not know whether or not there is a positive number
η and an infinity of square-free d for which εd > dd

η
.

(The answer to this question would be yes if, for exam-
ple, there were an infinity of Rd satisfying the unique
factorization property! This follows from a famous the-
orem of Brauer (1947) and Siegel (1935); for a proof of
the Brauer–Siegel theorem, see theorem 8.2 of chapter 8
in Narkiewicz (1973) or Lang (1970).)

6 Binary Quadratic Forms and the
Unique Factorization Property

The principle of unique factorization is an all-impor-
tant fact for the ring of ordinary integers Z. The ques-
tion of whether this principle does or does not hold
for a given ring Rd is central to the algebraic num-
ber theory. There are helpful, analyzable, obstructions
to the validity of unique factorization in Rd. These
obstructions, in turn, connect with profound arithmetic
issues, and have become the focus of important study
in their own right. One such mode of expressing the
obstruction to unique factorization is already promi-
nent in Gauss’s Disquisitiones Arithmeticae (1801), in
which much of the basic theory of Rd was already laid
down.

This “obstruction” has to do with how many “essen-
tially different” binary quadratic forms aX2 + bXY +

cY 2 there are with discriminant equal to the fundamen-

tal discriminant D of Rd. (Recall that the discriminant

of aX2 + bXY + cY 2 is b2 − 4ac, and that D equals 4d
unless d ≡ 1 mod 4, in which case it equals d.)

In order to define a binary quadratic form aX2 +
bXY + cY 2 of discriminant D, what you need to pro-

vide is simply a triplet of coefficients (a, b, c) such that

b2−4ac = D. Given such a form, one can use it to define

other ones. For example, if we make a small linear

change of the variables, replacing X by X−Y and keep-

ing Y fixed, then we get a(X − Y)2 + b(X − Y)Y + cY 2,

which simplifies to aX2 + (b− 2a)XY + (c − b+a)Y 2.

That is, we get a new binary quadratic form whose

triplet of coefficients is (a, b−2a, c−b+a), and which

(as can easily be checked) has the same discriminant

D. We can “reverse” this change by replacing X by

X + Y and keeping Y fixed. If we do this reversal and

perform the corresponding simplification then we get

back our original binary quadratic form. Because of this

reversibility, these two quadratic forms take exactly

the same set of integer values as X and Y vary: it is

therefore reasonable to think of them as equivalent.

More generally, then, one says that two binary quad-

ratic forms are equivalent if one can be turned into the

other (or minus the other) by any “reversible” linear

change of variables with integer coefficients. That is,

one chooses integers r , s, u, v such that rv−su = ±1,

replaces X and Y by the linear combinations X′ =
rX + sY , Y ′ = uX + vY , and simplifies the resulting

expression to get a new triplet of coefficients. The con-

dition rv − su = ±1 guarantees that by a similar oper-

ation we can get back to our original binary quadratic

form, and also that the new binary quadratic form has

the same discriminantD as the old one. So when we talk

of “essentially different” binary quadratic forms of dis-

criminant D we mean that we cannot turn one into the

other by this kind of change of variables.

Here is the surprising obstruction to unique factor-

ization that Gauss discovered.

The unique factorization principle is valid in Rd if

and only if every homogeneous quadratic form aX2 +
bXY + cY 2 with discriminant equal to the fundamen-

tal discriminant of Rd is equivalent to the fundamental

quadratic form of Rd.

Furthermore, the collection of inequivalent quadratic

forms whose discriminant is the fundamental discrim-

inant of Rd expresses in concrete terms the degree to

which Rd “enjoys unique factorization.”
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If you have never seen this theory of binary quadratic

forms before, try your hand at working with quadratic

forms in the case where D = −23. The idea is to start

with some particular quadratic form aX2 +bXY + cY 2

of your choice with discriminant D = b2 − 4ac =
−23. Then, using a sequence of carefully chosen linear

changes of variables you reduce the size of the coeffi-

cients a, b, and c until you can go no further. Eventually

you should end up with one of the two (inequivalent)

quadratic forms that there are with discriminant −23:

the fundamental form X2 + XY + 6Y 2, or the form

2X2 + XY + 3Y 2. For example, can you see that the

binary quadratic form X2 + 3XY + 8Y 2 is equivalent

to X2 +XY + 6Y 2?

This type of exercise offers a small hint of the role

that the geometry of numbers will play in the even-

tual theory. As you might expect from the venerability

of these ideas, elegant streamlined methods have been

discovered for making such calculations. Nevertheless,

it is an open secret that any working mathematician,

contemporary or ancient, engaged in this subject or

nearby subjects, has done a myriad of straightforward

simple hand computations along the lines of the above

exercise.

If you try a few examples of this exercise, as I hope

you do, here is one way of organizing your calcula-

tions. First, find a simple reversible linear change of

variables to turn your form into an equivalent one with

a,b, c � 0. (You may also have to multiply the whole

form by −1.)

The cleanest way of writing down all binary quadratic

forms given by triplets (a, b, c) of discriminant −23 is

to list the triplets in increasing order of b, which will

now be an odd positive integer. For each value of b you

can then choose a and c in such a way that their prod-

uct is 1
4 (b

2 + 23). At this point the aim is to build up a

repertoire of moves that tend to decrease b (which will

keep a and c within bounds as well). A big clue, and aid,

here is that for any pair of relatively prime integersx,y
if you evaluate your quadratic form aX2+bXY+cY 2 at

(X, Y) = (x,y) to get the integera′ = ax2+bxy+cy2,

you can find, for appropriate b′ and c′, a quadratic form

a′X2+b′XY +c′Y 2 equivalent to yours, with first coef-

ficient a′. So, one tactic is to look for small integers

represented by your quadratic form. Also the “exam-

ple” linear change of variables X �→ X − Y , Y �→ Y will

lead you to be able to reduce the coefficient b to an inte-

ger smaller than 2a. Can you check that X2+XY +6Y 2

and 2X2 +XY + 3Y 2 are inequivalent?

Now, as we have just discussed, it follows from the
general theory that R−23 does not have the unique fac-
torization property. We can also see this directly. For
example,

τ−23 · τ′−23 = 2 · 3,

and all four of the factors in this equation are irre-
ducible in R−23. To be a faithful companion, I should at
this point give at least a hint at what connection there
might be between this specific “failure of unique factor-
ization” and the previous discussion. It may become a
bit clearer in the next paragraph, but the underlying
tension in the equation τ−23 ·τ′−23 = 2 ·3 is that all the
factors in our ring are prime: we are missing any ele-
ments in our ring R−23 that could factorize it further.
We lack, for example, elements that play the role of
the greatest common divisor of factors of this equation.
The general theory regarding these matters (which we
are not entering into here, but see euclid’s algorithm
[III.22]) tells us that what is missing is some element γ
in R−23 that is both a linear combination of the num-
bers τ−23 and 2 (with coefficients in the ring R−23) and
also a common divisor of τ−23 and 2 in the ring R−23,
i.e., such that τ−23/γ and 2/γ are both in R−23. There is
no such element, for its norm must divide N(τ−23) = 6
and N(2) = 4, and therefore be equal to 2, which can
easily be shown to be impossible. But we are interested,
rather, in the phenomenon that inequivalence of certain
binary quadratic forms will indeed show this, so let us
go on.

First, check that any linear combination

α · τ−23 + β · 2

with α, β elements of R−23 can also be written as
u·τ−23+v·2, whereu and v are ordinary integers. Now
compute the binary quadratic form given by systemat-
ically taking the norms of these linear combinations,
and viewing these norms as functions of the integer
coefficients u, v :

N(u · τ−23 + v · 2) = (τ−23u+ 2v)(τ′−23u+ 2v)

= 6u2 + 2uv + 4v2.

Viewing theu and the v as variables, and dubbing them
U and V to emphasize their status as variables, we can
say that the norm quadratic form obtained from the
collection of linear combinations of τ−23 and 2 is

6U2 + 2UV + 4V2 = 2 · (3U2 +UV + 2V2).

Now suppose that, contrary to fact, there were a com-
mon divisor, γ, as above; in particular, the multiples of
γ in the ring R−23 would then be precisely the linear
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combinations of the numbers τ−23 and 2. We would
then have another way of describing those linear combi-
nations; namely, for any pair of ordinary integers (u,v)
there would be a pair of ordinary integers (r , s) such
that

u · τ−23 + v · 2 = γ · (rτ−23 + s) = rγτ−23 + sγ.
Taking norms, as above, we would get

N(γ · (rτ−23 + s)) = N(rγτ−23 + sγ)
= N(γ)(6r2 + rs + s2).

Again, thinking of r and s as variables and renaming
them R and S we would have the corresponding norm
quadratic form:

N(γ) · (6R2 + RS + S2) = 2 · (6R2 + RS + S2).

Given the above facts—dependent, of course, on the
contrary-to-fact hypothesis that there is a γ as above—
the key idea is that there would be linear changes of
variables from (U,V) to (R, S) and back that would
establish an equivalence between the two quadratic
forms 2 · (3U2+UV +2V2) and 2 · (6R2+RS+S2). But
these quadratic forms are not equivalent! Their inequiv-
alence therefore shows that the putative γ does not
exist and factorization in the ring R−23 is not unique.

7 Class Numbers and the Unique
Factorization Property

In the previous section we saw that the collection
of inequivalent quadratic forms of discriminant equal
to the fundamental discriminant provides us with an
obstruction to unique factorization. Somewhat later,
a more articulated version of this obstruction arose,
known as the ideal class group Hd of Rd. As its name
implies, to describe this we must use the vocabulary of
ideals [III.83 §2] and groups [I.3 §2.1]. A subset I of
Rd is an ideal if it has the following closure properties:
if α belongs to I, so do −α and τdα, and if α and β
belong to I, so does α + β. (The first and third prop-
erties imply together that any integer combination of
α and β belongs to I.) The basic example of such an
ideal is the set of all multiples of some fixed, nonzero
element γ of Rd, where by a multiple of γ we mean the
product of γ and an element of Rd. We denote this set
tersely as (γ), or, slightly more expressively, as γ · Rd.
An ideal of this sort, i.e., one that can be expressed as
the set of all multiples of a single nonzero element γ, is
called a principal ideal. For example, the ring Rd itself
is an ideal (it consists, after all, of all linear combina-
tions of 1 and τd) and is even a principal ideal: in our

laconic terminology, it can be denoted (1) = 1·Rd = Rd.
Strictly speaking, the singleton {0} is also an ideal, but
the ones that will interest us are the nonzero ideals.

As a direct counterpart to the obstruction principle
involving binary quadratic forms that was described in
the previous section, we have the following obstruction
principle involving ideals.

The unique factorization principle is valid in Rd if and
only if every ideal in Rd is principal.

Reflecting on this, you can get a sense of why the word
“ideal” might have been chosen. Every principal ideal
in Rd is of the form γ · Rd for some number γ in Rd
(which is uniquely determined apart from multiplica-
tion by units), but sometimes there are more general
ideals. These arise if you ever have two elements of Rd
(think of τ−23 and 2, as in the previous section) such
that the set of all their integer combinations cannot be
expressed as the set of multiples of some fixed num-
ber γ in Rd. This phenomenon is a sign that we may be
missing numbers in Rd that provide fine enough factor-
izations to make the arithmetic in Rd as smooth going
as one might hope for. Just as a principal ideal γ · Rd
corresponds to the number γ, ideals of this more gen-
eral kind (think of the set of all integer combinations
of τ−23 and 2) can be thought of as corresponding to
“ideal numbers” that should, “by rights,” be present in
our ring, but happen not to be.

Once we think of ideals as standing for ideal num-
bers it makes some sense to try to multiply them: if I,
J are two ideals in Rd, we let I · J denote the set of all
finite sums of products α · β in which α is in I and β
is in J. The product of two principal ideals (γ1) · (γ2)
is the principal ideal (γ1 · γ2) so, just as one would
hope, multiplication of principal ideals corresponds to
multiplication of the corresponding numbers. Multipli-
cation of any ideal I by the ideal (1) leaves I unchanged:
(1) · I = I; we therefore refer to the ideal (1) as the unit
ideal. With this new notion of multiplication of ideals we
can now give the general definition of what it means for
a prime number p to split or to remain prime in a ring
Rd, the definition we promised in section 4.

The idea behind the definition is to use multiplication
of ideals rather than of numbers. So if we are think-
ing about a prime p, the first thing we do is turn our
attention to the principal ideal (p) in Rd. If this can
be factorized as a product of two different ideals (not
necessarily principal ideals, this is the whole point) in
Rd, and if neither of these is the unit ideal (1) = Rd,
then we say that p splits in Rd. If, on the other hand,
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no factorization of the ideal (p) can be made without

one of the factors being the ideal (1) = Rd, then we

say that p remains prime in Rd. There is also a third

important definition: if the principal ideal (p) can be

expressed as the square of another ideal I, then we say

that p ramifies in Rd. Continuing with the momentum

of this definition, we may say that an ideal P is a prime

ideal if P cannot be “factorized” as the product of two

ideals neither of which is the unit ideal. This defini-

tion makes sense whether or not P is principal, so we

are subtly shifting our attention from the multiplicative

arithmetic of the numbers in Rd to the ideals.

By definition, two ideals are in the same ideal class

if when you multiply each by an appropriate principal

ideal you get the same ideal as a result. This is a nat-

ural equivalence relation [I.2 §2.3] on ideals. It is

also one that respects products, meaning that if I and

J are two ideals, then the ideal class of their product

I · J depends only on the ideal classes of I and J. (In

other words, if I′ is in the same ideal class as I and

J′ is in the same ideal class as J′, then I′ · J′ is in the

same ideal class as I · J.) We can therefore say what we

mean by multiplication of ideal classes: to multiply two

classes, pick an ideal from each, multiply those, and

take the ideal class of the resulting product. The set

Hd of ideal classes of Rd, given this operation of multi-

plication, forms an Abelian group, in the sense that the

multiplication law we have just defined is associative

and commutative, and there are inverses. The identity

element is the principal ideal Rd itself. This group Hd,

the ideal class group, directly measures the extent to

which the ideals of the ring Rd are principal: roughly

speaking it is what you get if you take the multiplicative

structure of all ideals and “divide out” by the principal

ones.

As was mentioned in section 6, there is a close con-

nection between ideal classes and binary quadratic

forms. To begin to see this, take an ideal I of Rd and

write it as the set of all integer combinations of two

elements α, β of Rd. Then consider the norm function

on the elements of I, that is,

N(xα+yβ) = (xα+yβ)(xα′ +yβ′)
= αα′x2 + (αβ′ +α′β)xy + ββ′y2.

This is a binary quadratic form in the variable coeffi-

cients x and y . If you start with a different choice of α,

β that generate I you get a different form, but the two

forms are scalar multiples of two forms with discrimi-

nant D that are equivalent to one another. Even better,

the equivalence class of these forms depends only on

the ideal class of I.
It can be shown that there are only a finite number of

distinct ideal classes of Rd; that is, the ideal class group

Hd is finite. The number of its elements is denoted hd
and called the class number of Rd. So, the obstruction

to unique factorization of Rd is given by the nontrivial-

ity of the group Hd; equivalently, unique factorization

holds for Rd if and only if its class number is 1. But

whether or notHd is trivial, its detailed group-theoretic

structure is profoundly related to the arithmetic of Rd.

The class number enters into the generalizations of

formulas (5) and (10) of section 1; that is, the analytic

formulas we alluded to in that section. These formu-

las represent just the beginning of one of the ongoing

chapters of our subject, and form a bridge between the

world of discrete arithmetical issues and that of calcu-

lus, infinite series, and volumes of spaces, all of which

can be attacked by the methods of complex analysis

[I.3 §5.6]. Here is a sample of them.

(i) If d > 0 is a square-free integer and D is either

d or 4d according to whether d is congruent to 1

modulo 4 or not, then

hd · log εd√
D
=
∑
n�0

± 1
n
,

where the integers n run through those that are

relatively prime to D and the signs ± are chosen

in a way that depends only on the residue class of

n modulo D.

(ii) If d < 0 we have a somewhat simpler formula:

there is no fundamental unit εd in Rd to contend

with, but when d = −1 or −3, there are more roots

of unity than merely±1. Ifwd denotes the number

of roots of unity in Rd, thenw−1 = 4,w−3 = 6 and

otherwise wd = 2, and then one has a formula of

the following type:

hd
wd
√
D
=
∑
n�0

± 1
n
.

As d tends to −∞ the class number hd tends to

infinity.

We have effective lower bounds for the growth of hd
but these lower bounds are probably still far from the

actual growth (cf. Goldfeld 1985). The effective lower

bounds that are known are exceedingly weak. They fol-

low, however, from beautiful work of Goldfield, and

of Gross and Zagier: for every real number r < 1
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there is a computable constant C(r) such that hd >
C(r) log |D|r . Here is a sample:

hd >
1

55

∏
p|D

(
1− 2

√p
p + 1

)
· log |D|

if (D,5077) = 1.

It is a striking lacuna in our theory that, even today,
nobody knows how to prove that there are infinitely
many values of d > 0 for which Rd enjoys the unique
factorization property—particularly since we expect
that more than three quarters of them do! Our expec-
tations are even more precise than that, thanks to
Henri Cohen and Hendrik Lenstra, who make use of
certain probabilistic expectations (now known as the
Cohen–Lenstra heuristics) to conjecture that the density
of positive fundamental discriminants of class num-
ber 1 among all positive fundamental discriminants is
0.75446 . . . .

8 The Elliptic Modular Function and
the Unique Factorization Property

A different obstruction to unique factorization in Rd is
available when d is negative. Now Rd may be thought
of as a lattice in the complex plane (see figure 3), which
makes a wonderful tool available for us: the classical
elliptic modular function of klein [VI.57],

j(z) = e−2π iz + 744+ 196 884 e2π iz

+ 21 493 760 e4π iz + 864 299 970 e6π iz + · · · .
(13)

This function, also colloquially referred to as the
“j-function,” converges for complex numbers z = x +
iy with y > 0. If z = x + iy and z′ = x′ + iy′ are two
such complex numbers, then j(z) = j(z′) if and only if
the lattice generated by z and 1 in the complex plane is
the same as the lattice generated by z′ and 1 (or, equiv-
alently, z′ = (az + b)/(cz + d), where a, b, c, and d
are ordinary integers such that ad − bc = 1). We can
paraphrase this by saying that the value j(z) depends
only on, and characterizes, the lattice generated by z
and 1.

It turns out (by a theorem of Schneider) that if an
algebraic number α = x + iy with y > 0 has the prop-
erty that j(α) is also algebraic, then α is a (complex)
quadratic irrationality; and the converse is also true. In
particular, since α = τd is such a complex quadratic
irrationality when d is negative, the value, j(τd), of the
j-function on τd is an algebraic number—in fact, an
algebraic integer. This will be of some importance for

our story. First, since the ring Rd as situated in the com-

plex plane is simply the lattice generated by τd and 1,

it follows from the previous paragraph that this value

j(τd) will be the same if we replace τd by any element

α ofRd, as long as the lattice generated byα and 1 is the

entire ring Rd. More importantly, j(τd) is an algebraic

integer of degree roughly comparable with the class

number of Rd. In particular, it is an ordinary integer

if and only if the ring Rd has the unique factorization

property. (This result is one of the great applications

of a classical theory known as complex multiplication.)

In brief, here is yet another answer to the question of

when the unique factorization principle holds for Rd
when d is negative: if j(τd) is an ordinary integer, the

answer is yes; otherwise it is no.

The search for the full list of negative values of d
for which Rd has the unique factorization property

makes a marvelous tale: there are precisely nine val-

ues of d for which it occurs (see below), but for over

two decades number theorists, while knowing these

nine, could prove only that there were no more than

ten. The history of how the nonexistence of a possible

tenth value of d was established, and reestablished, is

one of the thrilling chapters in our subject. K. Heeg-

ner, in an article published in 1934, provided what he

claimed was a proof of the nonexistence of the possible

tenth value of d. However, Heegner’s proof was framed

in somewhat unfamiliar language and was not under-

stood by the mathematicians of the time. His paper

and his purported proof were largely forgotten until

the late 1960s, when the nonexistence of the tenth

field was established (to the mathematical community’s

satisfaction) by Stark (1967) and independently, via a

different method, by Baker (1971). It was only then

that mathematicians took a second and closer look at

Heegner’s original article and discovered that he had

indeed proven exactly what he claimed. Moreover, his

proof offered an elegant direct conceptual road to an

understanding of the underlying issue.

Here are the nine values of d:

d = −1, −2, −3, −7, −11, −19, −43, −67, −163.

And here are the corresponding nine values of j(τd):
PUP: I can confirm
that the fact that
the second
number is greater
than the first in
the sequence is OK
here.

j(τd) = 2633, 2653, 0, −3353, −215, −21533,

− 2183353, −2153353113, −2183353233293.

As Stark once pointed out, if, for some of these val-

ues of d, you simply “plug” τd into the power series

expansion for j, you get rather surprising formulas. For
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example, when d = −163, then

e−2π iτd = −eπ
√

163

is the first term of the power series for j(τ−163) (see
formula (13)). Since j(τ−163) = −2183353233293 and
since all the terms e2πnτd (n > 0) that appear in the
power series for the j-function are relatively small, we
find that eπ

√
163 is incredibly close to an integer. Indeed,

it is 2183353233293 + 744 + · · · , which works out as
262 537 412 640 768 744 − ε, where the error term ε is
less than 7.5× 10−13.

9 Representations of Prime Numbers
by Binary Quadratic Forms

More often than you might expect, it turns out to be
possible to translate difficult and/or somewhat artifi-
cial problems about ordinary integers into natural and
tractable problems about larger rings of algebraic inte-
gers. My favorite elementary example of this type is the
theorem due to fermat [VI.12] that if a prime numberp
may be expressed as a sum of two squares, p = a2+b2

with 0 < a � b, then it has only one such expression.
(For example, 12+102 is the only way of expressing the
prime number 101 as the sum of two squares.) More-
over, a prime number p can be expressed as a sum of
two squares if and only if p = 2 or p is of the form
4k + 1. (The “only if” part of this is easy to see: since
any square is congruent either to 0 or to 1 mod 4, an
odd integer that is a sum of two squares is necessarily
congruent to 1 mod 4.) These statements about ordi-
nary integers can be translated into basic statements
about the ring of Gaussian integers. For if we write
a2 + b2 = (a + ib)(a − ib), with i = √−1, then we can
view a2 + b2 as the norm of the (conjugate) elements
a ± ib in the ring of Gaussian integers. So, if p is a
prime number that admits an expression as a sum of
squares, p = a2 + b2, it follows that each of the ele-
ments a ± ib has norm a prime integer. It is easy to
deduce that p is itself a prime in the ring of Gauss-
ian integers. Indeed, any factorization of a ± ib into a
product of two Gaussian integers would have the prop-
erty that the norms of the factors are ordinary integers
which multiply out to be the prime p, and this severely
limits their possibilities: one of them has to be a unit.

In other words, whenever p = a2 + b2, then

p = (a+ ib)(a− ib)

is a factorization of the ordinary integer prime p into
a product of two Gaussian integer primes. The unique-
ness part of Fermat’s theorem then follows from (in

fact, it is readily seen to be equivalent to) the unique
factorization property of the ring R−1 of Gaussian inte-
gers. That any prime number p of the form 4k + 1
admits such an expression as a sum of two squares
follows from the splitting law for primes p in the ring
of Gaussian integers: an odd prime number p is a
norm, and hence splits into the product of two dis-
tinct primes, in the ring of Gaussian integers if and
only if p is congruent to 1 mod 4. This result is just
the beginning of an immense chapter of arithmetic.

10 Splitting Laws and the Race
between Residues and Nonresidues

The simple splitting law for ordinary prime integers p
in the ring of Gaussian integers, which states that p
splits if p ≡ 1 mod 4 and not if p ≡ −1 mod 4, invites
us to ask how often each of these cases occurs (see fig-
ure 4). dirichlet [VI.36] proved a famous theorem that
says that there are infinitely many primes in the arith-
metic progression c,m + c,2m + c, . . . if the integers
m and c are relatively prime. A more precise version of
his result gives a clear asymptotic answer to the ques-
tion we have just asked: as x goes to infinity, the ratio
of the number of primes less than x that split to the
number that do not tends to 1. (See analytic number
theory [IV.2 §4] for a further discussion of Dirichlet’s
theorem.)

For fun, one might ask a fussier question: which
type of prime less than x is actually in greater abun-
dance, the nonsplit primes or the split ones (see fig-
ure 4)? To put some perspective on this, let us widen
our query: for q equal either to 4 or to an odd prime,
let A(x) be the number of primes 	 < x that are quad-
ratic residues modulo q and let B(x) be the number
of primes 	 < x that are quadratic nonresidues mod-
ulo q. Let D(x) = A(x)− B(x) be the difference; what
does D(x) look like?

For an absorbing account of the history and status PUP: what do you
think of this
sentence? The full
reference details
are available so
perhaps I should
add this to the
further reading of
this article and
reword here
instead, but this is
how the author
would prefer this
to be cited.

of this problem, see the article “Prime number races”
by Andrew Granville and Greg Martin in American
Mathematical Monthly.

11 Algebraic Numbers and Algebraic Integers

Now that we have seen the algebraic integers j(τd) for
negative values of d, and have touched on trigonomet-
ric sums, we have a few hints that, as with ordinary inte-
gers, the deep structure of these rings of quadratic inte-
gers may be better understood within a larger context
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Figure 4 The higher of the two graphs in the figure repre-
sents the number of primes less than X that remain prime
in the ring of Gaussian integers, and the lower represents
the number of primes less than X that split in the ring
of Gaussian integers. The third graph hovering around the
x-axis represents the difference between the two numbers.
We thank William Stein for this data.

of algebraic numbers. So now let us deal with algebraic
numbers in full generality.

By a monic polynomial, we mean a polynomial of the
form

P(X) = Xn + a1Xn−1 + · · · + an−1X + an,
i.e., a polynomial of degree n such that the coefficient
of Xn is 1. In general, the other coefficients are just
assumed to be complex numbers. If P(X) = Xn +
a1Xn−1 + · · · + an−1X + an is such a polynomial, and
if Θ is a complex number such that P(Θ) = 0, or,
equivalently, if Θ satisfies the polynomial equation

Θn + a1Θn−1 + · · · + an−1Θ + an = 0,

we say that Θ is a root of the polynomial P(X). the
fundamental theorem of algebra [V.15], initially
proved by Gauss, guarantees that any such polyno-
mial of degree n factors into a product of n linear
polynomials. That is,

P(X) = (X −Θ1)(X −Θ2) · · · (X −Θn)
for some complex numbers Θ1, Θ2, . . . , Θn that are in
fact precisely the roots of the polynomial P(X).

If Θ is a root of such a polynomial P(X) = Xn +
a1Xn−1+· · ·+an−1X+an and if in addition the coeffi-

cients ai are rational numbers, thenΘ is called an alge-

braic number. If the coefficients are not just rational

but are in fact integers, then Θ is called an algebraic

integer. So, for example, the square root of any rational

number is an algebraic number and the square root of

any “ordinary” integer is an algebraic integer. The same

holds true fornth roots of ordinary integers, or of alge-

braic integers, for any natural number n. For an exam-

ple of a different sort, we have already mentioned the

theorem that the values of the j-function on complex

quadratic irrational integers are algebraic integers. For

a (random) particular case of that theorem, the complex

number j(τ−23) is a root of the monic polynomial

X3 + 3 491 750X2 − 5 151 296 875X

+ 12 771 880 859 375.

An exercise: show that any algebraic number can be

expressed as an algebraic integer divided by an ordi-

nary integer.

12 Presentation of Algebraic Numbers

In dealing with any mathematical concept, we confront,

in one way or another, the dual problem of the various

forms in which it comes to us when it arises in our

work, and the various ways we can present it so as to

deal with it effectively. We have already seen a bit of

this at the outset of this article, in our discussion of

quadratic surds, and we will continue to see it in our

treatment of them below, where the various modes in

which quadratic surds can be presented—as radicals, as

eventually recurrent continued fractions, or as trigono-

metric sums—come together, all contributing to their

unified theory.

This issue of presentation is all the more of a problem

with algebraic numbers in general, which may come to

us in a multitude of ways. For example, they can arise as

the coordinates of points on specific algebraic varieties

whose defining equations may not be easily available,

or as special values of functions like the j-function. It

is natural, then, to look for some uniform way of pre-

senting algebraic numbers, and the history of the sub-

ject shows how much effort has been devoted to such

a search. For example, consider the focus on iterated

radical expressions, as in the famous formula for the

solution to the general cubic equation X3 = bX + c
given by

X =
(
c
2
+
√
c2

2
− b

3

27

)1/3
+
(
c
2
−
√
c2

2
− b

3

27

)1/3
, (14)
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or the corresponding general solution to the fourth-
degree equation. These were major achievements of six-
teenth-century Italian algebra, and they culminated in
the proof that the general fifth-degree algebraic num-
ber could not be so expressed, which was a major
achievement of the early nineteenth century (see the
insolubility of the quintic [V.24]). The challenge
to give some analytic expression for such fifth-degree
algebraic numbers was the source of a classic book by
Klein, The Icosahedron, written in the late nineteenth
century. Kronecker wrote that it was the “dream of his
youth” (his Jugendtraum) to establish a uniform mode
of presentation for a class of algebraic numbers that
interested him, by expressing them as values of certain
analytic functions.

13 Roots of Unity

A central role in the theory of algebraic numbers is
played by the roots of unity, that is, the n complex solu-
tions of the equation Xn = 1, or equivalently the n
roots of the polynomial Xn − 1. If we let ζn = e2π i/n,
then these roots are precisely ζn and its powers, so in
particular they are algebraic integers. They give us the
factorization

Xn − 1 = (X − 1)(X − ζn)(X − ζ2
n) · · · (X − ζn−1

n ).

Now the powers of ζn form the vertices of a regular n-
gon in the complex plane, centered at the origin. This
has the following consequence, noticed by Gauss in
his youth. It can be shown that compass and straight-
edge constructions allow us, in effect, to extract square
roots, so whenever ζn can be given as an expression
built out of just square roots and the usual arithmeti-
cal operations, we have, implicitly, a ruler-and-compass
construction of the regular n-gon, and conversely.

To get some idea of why square roots are so closely
connected with these constructions, consider this. If we
have given ourselves a unit measure, which we can view
as the distance between the numbers 0 and 1 in the
(complex) plane, and if we have already constructed,
by whatever device, a specific point, x say, between 0
and 1 on the horizontal axis of the plane, we can first
“construct”x/2 by straightedge and compass, and then
go on to form a right-angled triangle with hypotenuse
of length 1 + x/2 and one of its other sides of length
1−x/2 (again using a straightedge and compass). The
Pythagorean theorem gives us that the third side of
that triangle is of length

√
x. If one follows this line of

thought (but adapts it to deal with complex quantities

as well as the real number x as in the example we have
just discussed), then one can see that the equations

ζ3 = 1
2 (1+ i

√
3),

ζ4 =
√

i,

ζ5 = 1
4 (
√

5− 1)+ i 1
8

(√
5+√5

)
,

ζ6 = − 1
2 (1+ i

√
3)

provide (implicit) constructions of the equilateral tri-
angle, the square, the regular pentagon, and the reg-
ular hexagon, respectively. By contrast, ζ7 cannot be
expressed solely in terms of the arithmetical operations
and square roots (it is the root of a quadratic equation
with coefficients that are rational expressions in the
roots of the irreducible cubic polynomial X3 − 7

3X +
7

27 ), which already suggests that the regular heptagon
might fail to be constructible by the standard classi-
cal means—and indeed it does fail without some act of
“angle trisection.” (In principle, though, the reader can
work out an expression for ζ7 in terms of square roots
and cube roots by means of the information provided in
the parenthetical phrase above, together with equation
(14).)

Gauss showed that if n > 2 is a prime number then
the regularn-gon is classically constructible if and only
if n is a Fermat prime, that is, a prime number of the
form 22a + 1. So, for example, the 11-gon and 13-gon
are not constructible by classical means, but since ζ17

is expressible as nested rational expressions of square
roots, the 17-gon is, famously, constructible.

So, not all roots of unity can be expressed as iter-
ated rational expressions of square roots. However, this
inhospitability is not mutual, since all square roots of
integers can be expressed as integer combinations of
roots of unity. More mysteriously, the elusive funda-
mental units εd (for d positive), for which there is no
known formula, are intimately related to a unit cd in
Rd which is an explicit rational expression of roots
of unity. (See below: it is called a circular unit.) This
satisfies the elegant formula

cd = εhdd , (15)

which establishes yet another explicit test of unique
factorization: the equality cd = εd is a “litmus” require-
ment for the unique factorization principle to hold in
Rd.

To give the flavor of the formulas involved, let p be
an odd prime number and let a be an integer not divis-
ible by p. Then define σp(a) to be +1 if a is a quad-
ratic residue modulo p, that is, if a is congruent to
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the square of an integer modulo p, and −1 if not. The
simple trigonometric sums of (1) and (6) generalize to
quadratic Gauss sums:

±i(p−1)/2√p = ζp + σp(2)ζ2
p + σp(3)ζ3

p + · · ·
+ σp(p − 2)ζp−2

p + σp(p − 1)ζp−1
p .

(16)

This formula is not too hard to prove, apart from deter-
mining which sign is correct in the initial ±, but after
considerable efforts Gauss managed to work this out
too. To see the connection between, say, formula (6)
and (16) note that when p = 5, the left-hand side of
(16) is

√
5 and the right-hand side is

ζ5 +−ζ2
5 − ζ−2

5 + ζ−1
5 = 2 cos 2

5π − 2 cos 4
5π.

As for the circular unit cp , it is defined to be

(p−1)/2∏
a=1

(ζap − ζ−ap )σp(a) =
(p−1)/2∏
a=1

sin(πa/p)σp(a),

and this leads to further formulas. For example, when
p = 5, we have εp = τ5 = 1

2 (1+
√

5), and since h5 = 1,
formula (6) for p = 5 tells us that

1+√5
2

= ζ5 − ζ−1
5

ζ2
5 − ζ−2

5

= sin 1
5π

sin 2
5π
.

14 The Degree of an Algebraic Number

If Θ is an algebraic integer that is also a rational num-
ber, then Θ is an “ordinary” integer. Here is the proof
of this fact. If Θ is a rational number, then we may
write Θ = C/D as a fraction in lowest terms. If Θ
is also an algebraic integer, then it is the root of a
monic polynomial with rational integer coefficients,
Θn + a1Θn−1 + · · · + an, so we have an equation

(C/D)n + a1(C/D)n−1 + · · · + an−1(C/D)+ an = 0.

Multiplying through by Dn we get

Cn + a1Cn−1D + · · · + an−1CDn−1 + anDn = 0,

where all terms are (ordinary) integers, and all but the
first one is divisible by D. If D > 1 then it has some
prime factor p, so all terms apart from the first are also
divisible by p. Since the terms add up to zero, it follows
thatp dividesCn, which implies thatp dividesC , which
contradicts the assertion that the fraction C/D is in its
lowest terms. This in turn contradicts the hypothesis
that Θ can be expressed as a ratio of whole numbers in
the first place. As the reader may like to verify, this fact
implies the result attributed to Theaetetus above, that√
A is irrational if and only if A is not a perfect square.

The degree of an algebraic number Θ is defined to
be the smallest degree, n, of any polynomial relation
Θn + a1Θn−1 + · · · + an−1Θ + an = 0 that Θ satisfies,
where the coefficients ai are rational numbers. The cor-
responding polynomial, P(X) = Xn + a1Xn−1 + · · · +
an−1X + an is unique, since if there were two of them
then their difference would be of smaller degree and
would also have Θ as a root. (One could make it monic
by dividing it through by the leading coefficient.) Let
us call P(X) the minimal polynomial of Θ. The mini-
mal polynomial is irreducible over the field of rational
numbers: that is, it cannot be factored as a product
of two polynomials, each of smaller degree and hav-
ing rational numbers as coefficients. (If it could, then
it would not be of minimal degree, since one of its fac-
tors would have Θ as a root.) The minimal polynomial
P(X) of Θ is a factor of any monic polynomial G(X)
with rational coefficients that has Θ as root. (The great-
est common divisor of P and G is another monic poly-
nomial with rational coefficients that has Θ as a root,
so it cannot be of degree smaller than that of P and it
must therefore be P .) The minimal polynomial P(X) of
Θ has distinct roots. (If P(X) had multiple roots, then
a little elementary calculus shows that it would share
a nontrivial factor with its derivative, P ′(X). Since the
derivative is of lower degree than P(X) and again has
rational coefficients, the greatest common divisor of P
and P ′ would provide a nontrivial factorization of P(X),
contradicting its irreducibility.)

A fundamental result due to Gauss is that the nth
root of unity ζn = e2π i/n is an algebraic integer of
degree precisely φ(n), where φ is Euler’s φ-function.
For example, if p is prime, the minimal polynomial of
ζp is

Xp − 1
X − 1

= Xp−1 +Xp−2 + · · · +X + 1,

which is of degree φ(p) = p − 1.

15 Algebraic Numbers as Ciphers Determined
by Their Minimal Polynomials

We have expressly insisted that our algebraic numbers
are complex numbers (of a certain sort). But another
possible attitude toward an algebraic number, Θ, an
attitude at times promoted by Kronecker, among oth-
ers, is to deal with Θ as an unknown satisfying only the
algebraic relations implied by the fact that it is a root
of its (unique monic) minimal polynomial with rational
coefficients. For example, if the minimal polynomial of
Θ is P(X) = X3 − X − 1, then, according to this view,



�

IV.1. Algebraic Numbers 15

Θ is just an algebraic symbol that comes with the rule
that any occurrence of Θ3 may be replaced by Θ + 1
(rather as the complex number i can be regarded as
a symbol with the property that i2 may be replaced
by −1). Any root of the minimal polynomial of Θ sat-
isfies all the same polynomial relations with rational
coefficients that Θ satisfies; these roots are called con-
jugates of Θ. If Θ is an algebraic number of degree n,
then Θ has n distinct conjugates, all of them again, of
course, algebraic numbers.

16 A Few Remarks about the
Theory of Polynomials

Central to the theory of polynomials in one variable—
and, therefore, particularly to the theory of algebraic
numbers—is the general relationship that roots have
to coefficients:

n∏
i=1

(X − Ti) = Xn +
n−1∑
j=0

(−1)jAj(T1, T2, . . . , Tn)Xn−j .

The polynomial Aj(T1, T2, . . . , Tn) is homogeneous of
degree j (this means that every monomial in it has total
degree j), has integer coefficients, and is symmetric in
(i.e., unchanged by any permutation of) the variables
T1, T2, . . . , Tn.

The constant term is the product of the roots:

An(T1, T2, . . . , Tn) = T1 · T2 · · · · · Tn,
which is known as the norm form. The coefficient of
Xn−1 is the sum of the roots:

A1(T1, T2, . . . , Tn) = T1 + T2 + · · · + Tn,
and this is the trace form.

When n = 2 the norm and trace are all the symmetric
polynomials in the list. Forn = 3, beyond the norm and
trace we also have the symmetric polynomial of degree
two:

A2(T1, T2, T3) = T1T2 + T2T3 + T3T1

= 1
2{(T1 + T2 + T3)2 − (T 2

1 + T 2
2 + T 2

3 )}.
It is of major importance to this theory, and more
specifically to galois theory [V.24], that the symme-
try properties of the conjugate roots are nicely reflected
in these symmetric polynomials. In particular, we have
the fundamental result that any symmetric polyno-
mial in T1, T2, . . . , Tn with rational coefficients can be
expressed as a polynomial with rational coefficients in
the symmetric polynomials Aj(T1, T2, . . . , Tn), and sim-
ilarly with integral coefficients. For example, the equa-
tion above shows that T 2

1 + T 2
2 + T 2

3 can be expressed

as

A1(T1, T2, T3)2 − 2A2(T1, T2, T3).

17 Fields of Algebraic Numbers
and Rings of Algebraic Integers

The inverse of a nonzero algebraic number is again an
algebraic number; the sum, difference, and product of
two algebraic numbers are algebraic numbers; the sum,
difference, and product of two algebraic integers are
algebraic integers. The neat proofs of these (latter) facts
are a good demonstration of the power of linear alge-
bra, and in particular of Cramer’s rule. This states that
any matrix with integer coefficients (and therefore also
any linear transformation of a finite-dimensional vec-
tor space that preserves an integer lattice) satisfies a
monic polynomial identity with integer coefficients.

To see just how useful this remark is for finding poly-
nomial relations, and more specifically for showing that
the collections of algebraic numbers and algebraic inte-
gers are closed under sums and products, try your hand
at showing that

√
2+√3 is an algebraic integer. One

way to do it is to search for the monic fourth-degree
polynomial equation that it satisfies. But this is hardly a
beautiful calculation! If, however, you are familiar with
linear algebra, then a less painful route is to form the
four-dimensional vector space over the rational num-
bers, generated by 1,

√
2,
√

3, and
√

6 (which are linearly
independent when the scalars are rational). Multiplica-
tion by

√
2+√3 defines a linear transformation T of

this vector space, and one can compute its character-
istic polynomial P . The Cayley–Hamilton theorem says
that P(T) = 0, and this translates into the statement
that

√
2+√3 is a root of P .

These “closure properties” we have just discussed
lead us to study, in complete generality, fields of alge-
braic numbers and rings of algebraic integers. A num-
ber field is a field that is generated (as a field) by finitely
many algebraic numbers. A standard result tells us that
any number field K can in fact be generated by a sin-
gle carefully chosen algebraic number. The degree of
this algebraic number equals the degree of K, which is
defined to be the dimension of K when K is viewed as a
vector space over the field Q of rational numbers. One
of the main introductory observations of Galois theory
is that if K is a number field of degree n, then there
are exactly n distinct ring homomorphisms (“imbed-
dings”) ι : K → C from K into the field of complex
numbers. (This means that ι sends 1 to 1 and respects
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the addition and multiplication laws within K. That is,

ι(x+y) = ι(x)+ ι(y) and ι(x ·y) = ι(x) · ι(y).) From

these imbeddings, we can construct some very useful

rational-valued functions on K. For any element x in K,

we form the n complex numbers x1, x2, . . . , xn that are

the images of x under the n different imbeddings of K
into C. We then let

aj(x) = Aj(x1, x2, . . . , xn),

where Aj(X1, X2, . . . , Xn) is the jth symmetric polyno-

mial of section 14 above. (Because the polynomials Aj
are symmetric, we do not have to worry about the order

of the images x1, x2, . . . , xn in the above expression.) It

is not immediately obvious that the values of aj are

rational numbers, but there is a theorem that tells us

this.

If an algebraic number Θ in K generates K (as a

field), then the rational numbers aj(Θ) are the coef-

ficients of its minimal polynomial; in general they are

the coefficients of a power of its minimal polynomial.

The most prominent of these functions are the multi-

plicative function an(x) = x1 · x2 · · · · · xn, called the
PUP: I can confirm
that the use of
‘an(x)’ and
‘a1(x)’ is OK. norm function, usually denoted x �→ NK/Q(x), and the

additive function a1(x) = x1+x2+· · ·+xn, called the

trace function, usually denoted x �→ traceK/Q(x).
The trace function can be used to define a fundamen-

tal symmetric bilinear form on the Q-vector space K,

〈x,y〉 = traceK/Q(x ·y),
which turns out to be nondegenerate. This nondegener-

acy, together with the fact that ifx,y are both algebraic

integers, then 〈x,y〉 is an ordinary integer, can be used

to show that the ringO(K) of all algebraic integers in K
is finitely generated as an additive group. More specifi-

cally, there is a basis of algebraic integers in K, that is,

a finite set {Θ1, Θ2, . . . , Θn}, such that any other alge-

braic integer in K can be expressed as an “ordinary”

integer combination of the numbers Θi.
Let us summarize this structure. The number field

K is a finite-dimensional vector space over Q and

comes equipped with a nondegenerate bilinear sym-

metric form (x,y) �→ 〈x,y〉, and also with a lattice

O(K) ⊂ K. Moreover, the restriction of the bilinear form

to O(K) takes on integral values.

The discriminant ofK, denotedD(K), is defined to be

the determinant [III.15] of the matrix whose ij-entry

is 〈Θi,Θj〉, for {Θ1, Θ2, . . . , Θn} a basis of the lattice

O(K); this determinant does not depend on the basis

chosen.

The discriminant represents important information
about the number field K. For one thing, there is a nat-
ural generalization to any number field of the notions
of splitting and ramification that we discussed for quad-
ratic fields, and the prime divisors p of D(K) are pre-
cisely those prime numbers that ramify in the field
extension K. By a theorem of minkowski [VI.64], the
absolute value of the discriminant D(K) of a number
field K of degree n is always greater than(

π
4

)n
·
(
nn

n!

)2

.

This is greater than 1 unless K is the field of rational
numbers. It follows that any nontrivial extension of the
field of rational numbers has some prime that ramifies
in it, a result that would be very hard to prove with-
out the help of the algebraic structures we have just
defined. This integer D(K) really is quite a discrimi-
nating “tag” for our number field K, for, by a theorem
of hermite [VI.47], given any integer D there are only
finitely many different number fields with discriminant
equal to D. (Not all integers can be discriminants: as is
true for quadratic number fields, the integersD that are
discriminants are either divisible by 4 or else congruent
to 1 modulo 4.)

18 On the Size(s) of the Absolute Values of
All Conjugates of an Algebraic Integer

As we have just seen, the coefficients of the minimal
polynomial for an algebraic integer Θ are given by the
ordinary integers aj(Θ1, Θ2, . . . , Θn), where the num-
bersΘi are all the conjugates ofΘ. The sizes of all these
coefficients must therefore all be less than some univer-
sal numberM that depends only on the degree ofΘ and
the largest absolute value of any of its conjugates. As
a consequence, given any n and any positive number
B, there are only finitely many algebraic integers Θ of
degree less than n such that the absolute values of Θ
and its conjugates are all less than B. (This is because
for any n and M there are only finitely many polyno-
mials of degree less than or equal tonwith the absolute
values of all their integer coefficients at most M .) This
finiteness result is the key to the following observation,
due to Kronecker: if Θ is an algebraic number and if
the absolute values of Θ and of all of its conjugates are
equal to 1, thenΘ is a root of unity. Indeed, all the pow-
ers of Θ have degree at most that of Θ, and they enjoy
the same property: their absolute value, and that of all
their conjugates, is equal to 1. Consequently, there are
only finitely many such algebraic numbers, from which
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it follows that there must be at least one coincidence
of the form Θa = Θb for different a and b. But this can
happen only if Θ is a root of unity.

19 Weil Numbers

To follow this thread for just a bit, let us generalize
the hypothesis of Kronecker’s observation, and define
a Weil number3 of absolute value r to be a nonzero
algebraic integer such that it and all of its conjugates
have the same absolute value r . By the discussion in
the previous section there are only finitely many dis-
tinct Weil numbers of given degree and absolute value.
By Kronecker’s theorem, which we have just described,
the Weil numbers of absolute value 1 are precisely the
roots of unity. Here are further basic facts that you
might try to prove. First, the quadratic Weil numbers
ω are precisely those quadratic algebraic integers such
that |trace(ω)| � 2

√|N(ω)| = 2
√|ωω′|, where ω′ is

the (algebraic) conjugate of ω. Second, if p is prime
then a quadratic Weil numberω of absolute value

√p is
a prime element of the (unique) ring of quadratic inte-
gers Rd that contains ω, and therefore gives a prime
factorization ωω′ = ±p of the integer p in that ring.

Weil numbers of absolute value pν/2, where p is
again a prime number and ν is a natural number, are
extremely important in arithmetic: they hold the key
to counting numbers of rational solutions of systems
of polynomial equations over finite fields. For just one
concrete example, the Gaussian integerω = −1+ i and
its algebraic conjugate (which, in this instance, is also
its complex conjugate) ω̄ = −1− i are Weil numbers (of
absolute value 2) that control the number of solutions
of the equation y2 −y = x3 −x over all finite fields of
size a power of 2. Specifically, the number of solutions
of that equation over a field of order 2ν is given by the
formula

2ν − (−1− i)ν − (−1+ i)ν

(which is an ordinary integer). This leads to another
immense chapter of mathematics.

20 Epilogue

The single symmetry α �→ α′, the algebraic conjuga-
tion in the rings Rd that we have discussed, gave birth,
thanks to abel [VI.33] and galois [VI.41] in the begin-
ning of the nineteenth century, to the rich study of

3. This is a weaker condition than is usually required for Weil num-
bers but our deviation from standard usage should not be the cause
of too much confusion.

(Galois) groups of symmetries of general number fields
(see the insolubility of the quintic [V.24]). This
study continues with great intensity, since these Galois
groups and their linear representations hold the key
to a very detailed understanding of number fields. In
its modern dress, algebraic number theory is closely
connected with what is often called arithmetic geom-
etry [IV.5]. Kronecker’s dream of getting explicit con-
trol of a wealth of algebraic number theoretic material
by expressing algebraic numbers in terms of natural
analytic functions has not yet been fully realized. Nev-
ertheless, the scope of this dream (and, one might also
add, the supply of natural analytic and algebraic func-
tions) has expanded substantially: the full range of alge-
braic geometry and group representation theory is now
being brought to bear on it. This is done, for example,
by the Langlands program, which among other things
works with objects known as Shimura varieties. On the
one hand, these varieties have close connections with
the theory of group representations and classical alge-
braic geometry, which greatly helps us to understand
them. On the other hand, they are a rich source of con-
crete linear representations of Galois groups of number
fields. This program, one of the glories of current math-
ematics, will, I expect, make a terrific chapter for a Com-
panion to Mathematics to be written at the beginning of
the next century.
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IV.2 Analytic Number Theory
Andrew Granville

1 Introduction

What is number theory? One might have thought that it
was simply the study of numbers, but that is too broad
a definition, since numbers are almost ubiquitous in
mathematics. To see what distinguishes number theory
from the rest of mathematics, let us look at the equa-
tion x2+y2 = 15 925, and consider whether it has any
solutions. One answer is that it certainly does: indeed,
the solution set forms a circle of radius

√
15 925 in the

plane. However, a number theorist is interested in inte-
ger solutions, and now it is much less obvious whether
any such solutions exist.

A useful first step in considering the above question
is to notice that 15 925 is a multiple of 25: in fact, it is
25× 637. Furthermore, the number 637 can be decom-
posed further: it is 49×13. That is, 15 925 = 52×72×13.
This information helps us a lot, because if we can find
integers a and b such that a2 + b2 = 13, then we can
multiply them by 5×7 = 35 and we will have a solution
to the original equation. Now we notice that a = 2 and
b = 3 works, since 22+32 = 13. Multiplying these num-
bers by 35, we obtain the solution 702 + 1052 = 15 925
to the original equation.

As this simple example shows, it is often useful to
decompose positive integers multiplicatively into com-
ponents that cannot be broken down any further. These
components are called prime numbers, and the fun-
damental theorem of arithmetic [V.16] states that
every positive integer can be written as a product of
primes in exactly one way. That is, there is a one-to-one
correspondence between positive integers and finite
products of primes. In many situations we know what
we need to know about a positive integer once we have
decomposed it into its prime factors and understood
those, just as we can understand a lot about molecules
by studying the atoms of which they are composed. For
example, it is known that the equation x2+y2 = n has
an integer solution if and only if every prime of the form
4m+3 occurs an even number of times in the prime fac-
torization ofn. (This tells us, for instance, that there are
no integer solutions to the equation x2 +y2 = 13 475,
since 13 475 = 52 × 72 × 11, and 11 appears an odd
number of times in this product.)

Once one begins the process of determining which
integers are primes and which are not, it is soon appar-
ent that there are many primes. However, as one goes
further and further, the primes seem to consist of a
smaller and smaller proportion of the positive integers.
They also seem to come in a somewhat irregular pat-
tern, which raises the question of whether there is any
formula that describes all of them. Failing that, can one
perhaps describe a large class of them? We can also ask
whether there are infinitely many primes. If there are,
can we quickly determine how many there are up to
a given point? Or at least give a good estimate for this
number? Finally, when one has spent long enough look-
ing for primes, one cannot help but ask whether there
is a quick way of recognizing them. This last question is
discussed in computational number theory [IV.3];
the rest motivate the present article.

Now that we have discussed what marks number
theory out from the rest of mathematics, we are ready
to make a further distinction: between algebraic and
analytic number theory. The main difference is that
in algebraic number theory (which is the main topic
of algebraic numbers [IV.1]) one typically considers
questions with answers that are given by exact formu-
las, whereas in analytic number theory, the topic of
this article, one looks for good approximations. For the
sort of quantity that one estimates in analytic num-
ber theory, one does not expect an exact formula to
exist, except perhaps one of a rather artificial and unil-
luminating kind. One of the best examples of such a


