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6 Abel’s Proof

Ideas, especially mathematical ideas, have a life that goes be-
yond their human creators. Without knowing Ruffini’s work,
Niels Henrik Abel (figure 6.1) discovered the same argument
only a few years later and also gave the first essentially com-
plete demonstration. Abel’s story is one of the most moving
in the history of mathematics. In his twenty-six years of life,
he discovered whole new territories in mathematics, though
struggling constantly with poverty and misunderstanding.
His native Norway was then in its youth as an independent
nation, and Abel’s checkered fortunes to some extent mir-
rored Norway’s struggle.

When Abel was 12, Norway separated from Denmark, long
the dominant partner in their dual kingdom, and set up her
own parliament, the Storting. But Norway could not com-
pletely separate from her more powerful neighbors. In 1814,
Abel’s father was among the delegates sent to offer the crown
of Norway to the reigning Swedish king, Karl XIII. Abel’s
father was a pastor, like his father before him, and had a
notable career as a member of the Storting. He was a man
of the Enlightenment who read Voltaire and was active in
the movement for literacy and vaccination in rural Norway.
He wrote several popular catechisms and books of prayer
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Figure 6.1
Niels Henrik Abel.
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doubtless read by his son. He was interested in natural sci-
ence and woke his children to see lunar eclipses. However,
his political career ended ignominiously when he pressed
unfounded accusations against certain powerful persons.
He died an alcoholic, leaving nine children and a widow
who also turned to alcohol for solace. After his funeral,
she received visiting clergy while in bed with her peasant
paramour.

Abel, then eighteen, found himself without support and
obliged to act as the responsible adult for his younger sib-
lings. Somehow, though, he continued his education. He had
been fortunate to find a mentor in a young mathematics
teacher, Berndt Michael Holmboe, who inspired him and
became his lifelong friend. Abel soon showed an amazing
ability to solve difficult problems. While still a high school
student, he read Lagrange’s work and Cauchy’s 1815 pa-
per on permutations. (Though Cauchy’s paper was based on
Ruffini’s work, Abel did not read Ruffini, perhaps because
his works were hard to find and in Italian.) Holmboe rec-
ognized and extolled his student’s “excellent mathematical
genius.” In 1821, Abel entered the Royal Frederick’s Univer-
sity, which had opened in 1819 in the new capital, Christiana
(now called Oslo), then a city with only 11,000 inhabitants.
He continued to make rapid strides, beginning to write orig-
inal papers and going far beyond the skill of his teachers.
With admirable understanding, those teachers proposed that
he be granted a special fellowship to visit Paris and Berlin,
though in fact he had little to learn even from the greatest
mathematicians of the time.

While always modest, Abel during this time set himself
to solve the most difficult and famous problems. In 1823,
he tried his hand at Fermat’s celebrated last theorem, to show
the impossibility of finding integers a, b, and c that would
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satisfy the equation a n = bn +cn, where n is an integer greater
than 2. Not surprisingly, he found himself “at the end of my
tether,” as he put it, for this problem resisted solution until
1993, when it finally succumbed to very elaborate abstract
techniques. Even so, he found what now are called “Abel’s
formulas,” which showed that if any solutions existed, they
would have to be extremely large numbers. Abel also turned
his mind to the problem of the quintic equation. At first, he
thought he had managed to solve it and was very excited.
This was in 1821, twenty-two years after Ruffini had pub-
lished the first version of his proof. At this point, Abel still
did not know Ruffini’s work, which is not surprising consid-
ering the isolation of Norway and its lack of mathematical
libraries. Indeed, during the winter months, the Oslo fjord
remained frozen and mail was often delayed.

Though Abel had probably taken note of Gauss’s opinion
that the quintic was unsolvable, he nonetheless refused to
give up the search for a solution. After all, Gauss offered no
proof for his assertion, and Abel, like Lagrange and most
other mathematicians, could well consider that the search
was not over. However, when his teachers asked him to give
some numerical examples of his solution to the quintic, Abel
soon realized that it was not as general as he had thought.
This was a decisive moment, for he could have stubbornly
resumed the quest for a fully general solution to repair the
gaps in his work, on the assumption that a solution had
to exist. Instead, he made an about-face and turned his ef-
forts to proving the unsolvability of the quintic. He never
explained his reasons, and one wonders what moved him.
In 1824, two years after Ruffini’s death, Abel published his
first proof of the unsolvability of the quintic, which in many
ways is close to Ruffini’s proof, although it fills in an im-
portant gap that Ruffini had not noticed. In 1826, Abel read
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anonymous articles summarizing the work of Ruffini, which
Abel acknowledged in his final (posthumous) paper: “The
first, and if I am not mistaken the only one, who before me
had tried to show the impossibility of the algebraic solution
of general equations is the geometer Ruffini. But his paper is
so complicated that it is very difficult to decide the correct-
ness of his reasoning. It seems to me that his reasoning is not
always satisfactory.”

Because Ruffini’s work overlaps largely with what Abel
went on to do, I will not discuss it separately. I do not mean
to belittle the recognition Ruffini is due. The theorem of un-
solvability may better be called the Abel-Ruffini Theorem.
Yet Abel’s remark, as well as Lagrange’s hesitation, indicate
aspects of decisive proof in which Ruffini fell short. A proof
that lacks a decisive step is not yet a proof. Accordingly, I
will summarize Abel’s version, indicating along the way the
common elements in their arguments and the crucial gap in
Ruffini’s reasoning that Abel filled.

If you wish to read Abel’s own words, appendix A contains
a translation of his 1824 paper. Abel had this earliest version
of the proof printed at his own expense as a pamphlet, hoping
to use it as a “calling card” that would gain the attention of
the great mathematicians, Gauss above all. However, to save
paper and money, Abel compressed his argument to tele-
graphic terseness, which he amplified in his later accounts of
the proof. Accordingly, I have added a running commentary
to help the reader follow Abel’s argument. Appendixes B and
C fill out details he merely mentions. Here I will present the
four crucial stages of the proof as Abel presented them in
1826, without spelling out all the technicalities to be found
in the appendixes. In each case, I will present a summary
statement, followed by my explanation.



pesic-79033 book January 29, 2003 11:59

90 Chapter 6

Abel uses the time-honored method of reductio ad absur-
dum: he begins by assuming that the quintic is solvable and
shows that this leads to a contradiction. His first step is to
specify the form that a solution must have. Given a general
equation of the mth degree (taking m as a prime number, so
that it cannot be factored further),

am ym + am−1 ym−1 + am−2 ym−2 + · · · + a2 y2 + a1 y + a0 = 0, (6.1)

Abel proves a very general statement about any solution,
which he calls an “algebraic function”:

(I) All algebraic functions y can be expressed in the form

y = p + R
1
m + p2 R

2
m + · · · + pm−1 R

m−1
m , (6.2)

where p, p2, . . . are finite sums of radicals and polynomials and
R 1

m is in general an irrational function of the coefficients of the
original equation.

That is, if y is the solution of an algebraic equation of degree
m, y can be expressed as a series of terms that contain nested
roots involving the coefficients and irrational expressions like
R 1

m . (Remember that R 1
m is just another way of writing the

mth root of R, m
√

R.) This is very close to the general form that
Euler had already conjectured some years before. Abel gives
a detailed proof (see appendix B, including some subtleties
neglected here), but the idea can readily be illustrated with a
few examples. As box 6.1 shows, the solution of the quadratic
equation can be expressed as y = p + R

1
2 , which is just the

general form above with m = 2 and p a simple polynomial.
Likewise, the solution of the cubic can be expressed as y =
p + R

1
3 + p2 R

2
3 , which follows the general form, with m = 3.

In both of these cases, m = 2 and m = 3, m is a prime number.
For the quartic, m = 4 is not prime and the general solution
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Box 6.1
Abel’s form for the quadratic equation

In the quadratic equation, y2 − a1 y + a0 = 0, substitute y =
p + R

1
2 to yield (p2 + R − a1 p + a0) + (2p − a1)R

1
2 = 0. To

satisfy this in general, each parenthesis must be separately
zero (as Abel discusses in [A8] in appendix A), so p = a1

2 and

then R = −a0 + a2
1
4 . Thus, y = a1

2 ± 1
2

√
a 2

1 − 4a0, the fami-
liar form of the quadratic solution. For the case of the cubic
solution, see p. 174 in appendix B.

involves only combinations of the quadratic and cubic forms,
as was discussed earlier.

In the case of the quintic, Abel’s general form (6.2) becomes

y = p + R
1
5 + p2 R

2
5 + p3 R

3
5 + p4 R

4
5 . (6.3)

Because this follows from his general result about the form of
the solution, either the solution of the quintic has this form,
or there is no such solution. So Abel assumes hypothetically
that the quintic does have a solution of exactly this form. He
now goes on to show that this form leads to a contradiction.
This requires three further steps.

The next step is crucial; Ruffini had assumed it without
giving a proof, but Abel remedies this.

(II) All algebraic functions y can be expressed in terms of
rational functions of the roots of an equation.

The idea here is simple but telling. In equation (6.3), the
general form of y is expressed in terms of polynomials and
also various irrational functions (here, R

1
5 , R

2
5 , R

3
5 , R

4
5 ) of the

coefficients. But Abel brilliantly proves that we can express
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Box 6.2
The relation between roots and coefficients

Let y = p + R
1
2 , as shown in box 6.1, which also shows

that R = −a0 + a2
1
4 . Now consider the two roots, y1 = a1

2 +
1
2

√
a 2

1 − 4a0, y2 = a1
2 − 1

2

√
a 2

1 − 4a0. Then (y1 − y2) =
√

a 2
1 − 4a0 and thus (y1 −y2)

2 = a 2
1 −4a0 = 4

(−a0 + a2
1
4

) = 4R.
The name discriminant is given to a 2

1 − 4a0, which is zero
when the roots are equal, y1 = y2, positive when the roots
are real, and negative when they are imaginary.

y in terms of the roots instead of the original coefficients of
the equation. What is important here is that all the various
irrational functions of the coefficients that appear in y
(e.g., R

1
5 ) are rational functions of the roots of the equation.

To choose a simple example, in the quadratic equation
above, whose general solution is y = p + R

1
2 , box 6.2

shows that 4R = (y1 − y2)
2, where y1, y2 are the two roots

of the quadratic. So 2R
1
2 , the square root of 4R, is equal

to the difference of the two roots, (y1 − y2). In agreement
with Abel’s proof, this is indeed a simple rational function of
the roots.

In the case of the quintic, Abel’s step II implies that R
1
5 is a

rational function of the roots, as are its powers, R
2
5 , R

3
5 , R

4
5 ,

as well as p, p2, . . . . Because it is made up of products of
all these rational functions, y is thus a rational function of
the roots. Here there is an interesting tension: The roots are
irrational functions of the coefficients, but those coefficients
are always rational sums or products of the roots. This harks
back to Girard’s identities (see box 4.1), which showed that
the coefficients were sums and products of the roots.
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Let us return to the tension between the irrationality of the
roots as functions of the coefficients, on the one hand, and
the rationality of the coefficients as products of the roots, on
the other. Roughly speaking, as the degree of the equation
grows higher, it is harder and harder to reconcile this tension.
Finally, with the quintic equation, it is no longer possible, and
we cannot, in general, find a solution in radicals. However,
this idea must be amplified much further.

The next step limits the hypothetical solution in a way that
will prove to be decisive.

(III) If a rational function of five quantities takes fewer than five
values when the five quantities are permuted, it can take only two
different values (equal in magnitude and opposite in sign), or one
value, but never three or four values.

Abel drew this theorem from the work of Cauchy, of which
it is a special case. Cauchy’s proof is presented in appendix C.
It relies on looking at the different ways we can permute the
roots of the equation. Abel also relies on the Fundamental
Theorem of Algebra: A quintic equation must have at least
one root and no more than five different roots. So there can
be no more than five values for y, which, according to step II,
is a rational function of the roots of the equation.

As before, let us consider any of the expressions in the
solution that is a rational function of the roots, such as R

1
5 .

Cauchy’s result requires that R
1
5 can take only one, two, or

five values as the roots are permuted, but never three or four
values. This gives Abel leverage to show that the solution
cannot work. First, note that R

1
5 cannot, in general, take only

one value, because then it could lead to a single solution,
not five roots, which we have assumed to be unequal. Then,
Abel investigates what happens if R

1
5 takes on five values
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(appendix A, [A15]–[A16]). This leads to a contradiction; he
shows that R

1
5 , having five possible values when the roots are

permuted, would have to be equal to an expression having
120 values, which is impossible.

That excludes the possibility that there are five values
for y. So Cauchy’s result must require that there be only two
(appendix A, [A27]). But this too leads to a contradiction,
because when we switch the five roots around, Abel shows
that we get an inconsistent result again. He derives an equa-
tion whose left-hand side has 120 possible values, while the
right-hand side has only 10. Clearly, such an equation cannot
be solved in general, and so the hypothetical solution leads
to absurdities. Therefore Abel concludes that

(IV) It is impossible to solve the general equation of the fifth
degree in radicals.

The strategy of Abel’s argument is straightforward: he
takes the only possible form a solution could have and shows
that it leads to contradictory results when we permute the
roots of the equation. This contradiction rests on a special
property of the number five, shown by the number of values
the hypothetical solution can take when subjected to permu-
tations of its five roots. The argument also applies for degrees
higher than five. For instance, we can multiply an unsolvable
quintic by a factor of y = y − 0, and it would then be a sixth-
degree equation that has one root y = 0 and five unsolvable
roots, and similarly for any higher degree.

Though Abel’s argument shows the impossibility of solv-
ing the quintic in general, it still seems opaque. The ques-
tion remains: why this impossibility? To examine this further
means we must seek the heart of Abel’s proof.


