
18 1 Modular Forms, Elliptic Curves, and Modular Curves
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and all such expansions are equally plausible Fourier series of f at s. In par-
ticular, when k is odd the leading coefficient is only determined up to sign,
and thinking of f(s) as a0 does not give it a well defined value. What is well
defined is whether a0 is 0, and so the intuition that a cusp form vanishes at
all the cusps makes sense.

For more examples of modular forms with respect to congruence sub-
groups, start from the weight 2 Eisenstein series
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where Z′
c = Z−{0} if c = 0 and Z′

c = Z otherwise. This series converges only
conditionally, but the terms are arranged so that in specializing equation (1.2)
to k = 2, the ensuing calculation remains valid to give
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(Exercise 1.2.8(a)). Conditional convergence keepsG2 from being weakly mod-
ular. Instead, a calculation that should leave the reader deeply appreciative
of absolute convergence in the future shows that

(G2[γ]2)(τ) = G2(τ)− 2πic
cτ + d

for γ =
[
a b
c d

]
∈ SL2(Z) (1.4)

(Exercise 1.2.8(b–c)). The corrected function G2(τ)− π/Im(τ) is weight-2 in-
variant under SL2(Z) (Exercise 1.2.8(d)), but it is not holomorphic. However,
for any positive integer N , if

G2,N (τ) = G2(τ)−NG2(Nτ)

then G2,N ∈ M2(Γ0(N)) (Exercise 1.2.8(e)). We will see many more Eisen-
stein series in Chapter 4.

Weight 2 Eisenstein series solve the four squares problem from the be-
ginning of the section. The modular forms G2,2 and G2,4 work out to (Exer-
cise 1.2.9)
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Now, G2,2 ∈M2(Γ0(2)) ⊂M2(Γ0(4)) (the smaller group allows more weight-
2 invariant functions and the other conditions in Definition 1.2.3 make no refer-
ence to a congruence subgroup, so the smaller group has more modular forms)
and G2,4 ∈M2(Γ0(4)). Exercise 3.9.3 will show that dim(M2(Γ0(4))) = 2, so
G2,2 and G2,4, which visibly are linearly independent, are a basis. Recall that
the function θ(τ, 4) also lies in the space M2(Γ0(4)). Thus θ = aG2,2 + bG2,4
for some a, b ∈ C, and the expansions

θ(τ, 4) = 1 + 8q + · · · ,
− 3
π2G2,2(τ) = 1 + 24q + · · · ,

− 1
π2G2,4(τ) = 1 + 8q + · · · ,

show that θ(τ, 4) = −(1/π2)G2,4(τ). Equating the Fourier coefficients gives
the representation number of n as a sum of four squares,

r(n, 4) = 8
∑
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d, n ≥ 1.

In particular, if 4 � n then r(n, 4) = 8σ1(n). The two squares problem, the
six squares problem, and the eight squares problem are solved similarly once
additional machinery is in place. For any even s ≥ 10 the same methods
give an asymptotic solution r̃(n, s) to the s squares problem, meaning that
limn→∞ r̃(n, s)/r(n, s) = 1. Exercise 4.8.7 will discuss all of this.

For another application of weight 2 Eisenstein series, first normalize G2 to

E2(τ) =
G2(τ)
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= 1− 24
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Then equation (1.4) with γ =
[ 0 −1
1 0

]
specializes to

τ−2E2(−1/τ) = E2(τ) +
12

2πiτ
. (1.5)

The Dedekind eta function is the infinite product

η(τ) = q24

∞∏
n=1

(1− qn), q24 = e2πiτ/24, q = e2πiτ .


