$$
\left(f[\alpha]_{k}\right)(\tau)=\sum_{n=0}^{\infty} a_{n} q_{h^{\prime}}^{n}, \quad q_{h^{\prime}}=e^{2 \pi i \tau / h^{\prime}}
$$

then since $e^{2 \pi i(\tau+j) / h^{\prime}}=\mu_{h^{\prime}}^{j} q_{h^{\prime}}$ where $\mu_{h^{\prime}}=e^{2 \pi i / h^{\prime}}$ is the complex h^{\prime} th root of unity, it follows that

$$
\left(f[\pm \alpha \beta]_{k}\right)(\tau)=(\pm 1)^{k} \sum_{n=0}^{\infty} a_{n} \mu_{h^{\prime}}^{n j} q_{h^{\prime}}^{n}, \quad q_{h^{\prime}}=e^{2 \pi i \tau / h^{\prime}}
$$

and all such expansions are equally plausible Fourier series of f at s. In particular, when k is odd the leading coefficient is only determined up to sign, and thinking of $f(s)$ as a_{0} does not give it a well defined value. What is well defined is whether a_{0} is 0 , and so the intuition that a cusp form vanishes at all the cusps makes sense.

For more examples of modular forms with respect to congruence subgroups, start from the weight 2 Eisenstein series

$$
G_{2}(\tau)=\sum_{c \in \mathbf{Z}} \sum_{d \in \mathbf{Z}_{c}^{\prime}} \frac{1}{(c \tau+d)^{2}}
$$

where $\mathbf{Z}_{c}^{\prime}=\mathbf{Z}-\{0\}$ if $c=0$ and $\mathbf{Z}_{c}^{\prime}=\mathbf{Z}$ otherwise. This series converges only conditionally, but the terms are arranged so that in specializing equation (1.2) to $k=2$, the ensuing calculation remains valid to give

$$
G_{2}(\tau)=2 \zeta(2)-8 \pi^{2} \sum_{n=1}^{\infty} \sigma(n) q^{n}, \quad q=e^{2 \pi i \tau}, \sigma(n)=\sum_{\substack{d \mid n \\ d>0}} d
$$

(Exercise 1.2.8(a)). Conditional convergence keeps G_{2} from being weakly modular. Instead, a calculation that should leave the reader deeply appreciative of absolute convergence in the future shows that

$$
\left(G_{2}[\gamma]_{2}\right)(\tau)=G_{2}(\tau)-\frac{2 \pi i c}{c \tau+d} \quad \text { for } \gamma=\left[\begin{array}{ll}
a & b \tag{1.4}\\
c & d
\end{array}\right] \in \mathrm{SL}_{2}(\mathbf{Z})
$$

(Exercise 1.2.8(b-c)). The corrected function $G_{2}(\tau)-\pi / \operatorname{Im}(\tau)$ is weight-2 invariant under $\mathrm{SL}_{2}(\mathbf{Z})$ (Exercise 1.2.8(d)), but it is not holomorphic. However, for any positive integer N, if

$$
G_{2, N}(\tau)=G_{2}(\tau)-N G_{2}(N \tau)
$$

then $G_{2, N} \in \mathcal{M}_{2}\left(\Gamma_{0}(N)\right)$ (Exercise 1.2.8(e)). We will see many more Eisenstein series in Chapter 4.

Weight 2 Eisenstein series solve the four squares problem from the beginning of the section. The modular forms $G_{2,2}$ and $G_{2,4}$ work out to (Exercise 1.2.9)

$$
G_{2,2}(\tau)=-\frac{\pi^{2}}{3}\left(1+24 \sum_{n=1}^{\infty}\left(\sum_{\substack{0<d \mid n \\ d \text { odd }}} d\right) q^{n}\right)
$$

and

$$
G_{2,4}(\tau)=-\pi^{2}\left(1+8 \sum_{n=1}^{\infty}\left(\sum_{\substack{0<d \mid n \\ 4 \nmid d}} d\right) q^{n}\right) .
$$

Now, $G_{2,2} \in \mathcal{M}_{2}\left(\Gamma_{0}(2)\right) \subset \mathcal{M}_{2}\left(\Gamma_{0}(4)\right)$ (the smaller group allows more weight2 invariant functions and the other conditions in Definition 1.2.3 make no reference to a congruence subgroup, so the smaller group has more modular forms) and $G_{2,4} \in \mathcal{M}_{2}\left(\Gamma_{0}(4)\right)$. Exercise 3.9 .3 will show that $\operatorname{dim}\left(\mathcal{M}_{2}\left(\Gamma_{0}(4)\right)\right)=2$, so $G_{2,2}$ and $G_{2,4}$, which visibly are linearly independent, are a basis. Recall that the function $\theta(\tau, 4)$ also lies in the space $\mathcal{M}_{2}\left(\Gamma_{0}(4)\right)$. Thus $\theta=a G_{2,2}+b G_{2,4}$ for some $a, b \in \mathbf{C}$, and the expansions

$$
\begin{aligned}
\theta(\tau, 4) & =1+8 q+\cdots \\
-\frac{3}{\pi^{2}} G_{2,2}(\tau) & =1+24 q+\cdots \\
-\frac{1}{\pi^{2}} G_{2,4}(\tau) & =1+8 q+\cdots
\end{aligned}
$$

show that $\theta(\tau, 4)=-\left(1 / \pi^{2}\right) G_{2,4}(\tau)$. Equating the Fourier coefficients gives the representation number of n as a sum of four squares,

$$
r(n, 4)=8 \sum_{\substack{0<d \mid n \\ 4 \nmid d}} d, \quad n \geq 1
$$

In particular, if $4 \nmid n$ then $r(n, 4)=8 \sigma_{1}(n)$. The two squares problem, the six squares problem, and the eight squares problem are solved similarly once additional machinery is in place. For any even $s \geq 10$ the same methods give an asymptotic solution $\tilde{r}(n, s)$ to the s squares problem, meaning that $\lim _{n \rightarrow \infty} \tilde{r}(n, s) / r(n, s)=1$. Exercise 4.8 .7 will discuss all of this.

For another application of weight 2 Eisenstein series, first normalize G_{2} to

$$
E_{2}(\tau)=\frac{G_{2}(\tau)}{2 \zeta(2)}=1-24 \sum_{n=1}^{\infty} \sigma(n) q^{n}
$$

Then equation (1.4) with $\gamma=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ specializes to

$$
\begin{equation*}
\tau^{-2} E_{2}(-1 / \tau)=E_{2}(\tau)+\frac{12}{2 \pi i \tau} \tag{1.5}
\end{equation*}
$$

The Dedekind eta function is the infinite product

$$
\eta(\tau)=q_{24} \prod_{n=1}^{\infty}\left(1-q^{n}\right), \quad q_{24}=e^{2 \pi i \tau / 24}, q=e^{2 \pi i \tau}
$$

