"삼각함수의 값"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
1번째 줄: 1번째 줄:
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
  
 +
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 +
 +
* 유리수<math>a\in\mathbb{Q}</math>에 대하여 <math>x=a\pi</math>일 때 삼각함수의 값을 구하는 문제는 수학적으로 중요
 +
* [[원분다항식(cyclotomic polynomial)]]의 해와 깊은 관련이 있음
 +
*  가령 [[가우스와 정17각형의 작도]]는 다음과 같은 코사인 값을 얻는 것과 같은 문제<br><math>\cos \frac{2\pi}{17}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+  \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{16}</math><br>
 +
 +
 
 +
 +
 
 +
 +
<h5>삼각함수의 값</h5>
 +
 +
<math>\cos {\frac{2\pi}{1}} = 1</math>
 +
 +
<math>\cos {\frac{2\pi}{2}} = -1</math>
 +
 +
<math>\cos {\frac{2\pi}{3}} = -\frac{1}{2}</math>
 +
 +
<math>\cos\frac{2\pi}{4}=0</math>
 +
 +
<math>\cos\frac{2\pi}{5}=\frac{\sqrt5 -1}{4}</math>
 +
 +
* [[정오각형]], [[황금비]]
 +
 +
<math>\cos\frac{2\pi}{6}=\frac{1}{2}</math>
 +
 +
<math>\cos\frac{2\pi}{7}=\frac{-1+\sqrt[3]{\frac{7}{2} \left(1-3 \sqrt{-3}\right)}+\sqrt[3]{\frac{7}{2} \left(1+3 \sqrt{-3}\right)}}{6}</math>
 +
 +
* <math>x^3 + x^2 - 2 x - 1=0</math> 을 풀어야 함
 +
 +
<math>\cos\frac{2\pi}{8}=\frac{\sqrt{2}}{2}</math>
 +
 +
<math>\cos \frac{2\pi}{17}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+  \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{16}</math>
 +
 +
* [[가우스와 정17각형의 작도]]
 +
 +
 
 +
 +
<math>\cos\frac{\pi}{4}=\cos\frac{\pi}{2^2}= \frac{\sqrt{2}}{2}</math>
 +
 +
<math>\cos \frac{\pi}{8}=\cos\frac{\pi}{2^3}= \frac{\sqrt{2+\sqrt{2}}}{2}</math>
 +
 +
<math>\cos \frac{\pi}{16}=\cos\frac{\pi}{2^4}= \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}</math>
 +
 +
<math>\cos \frac{\pi}{32}=\cos\frac{\pi}{2^5}=  \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2}</math>
 +
 +
<math>\cos \frac{\pi}{64}=\cos\frac{\pi}{2^6}= \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}{2}</math>
 +
 +
<math>\tan \frac{\pi}{8}=\sqrt{2}-1</math>
 +
 +
 
 +
 +
<h5>재미있는 사실</h5>
 +
 +
 
 +
 +
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 +
 +
 
 +
 +
 
 +
 +
<h5>역사</h5>
 +
 +
* [[수학사연표 (역사)|수학사연표]]
 +
 +
 
 +
 +
 
 +
 +
<h5>메모</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5>관련된 항목들</h5>
 +
 +
* [[가우스와 정17각형의 작도]]
 +
* [[원분체 (cyclotomic field)]]
 +
 +
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 +
 +
* http://www.google.com/dictionary?langpair=en|ko&q=
 +
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 +
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 +
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 +
 +
 
 +
 +
 
 +
 +
<h5>사전 형태의 자료</h5>
 +
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/
 +
* http://www.wolframalpha.com/input/?i=
 +
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 +
** http://www.research.att.com/~njas/sequences/?q=
 +
 +
 
 +
 +
 
 +
 +
<h5>관련논문</h5>
 +
 +
* http://www.jstor.org/action/doBasicSearch?Query=
 +
* http://dx.doi.org/
 +
 +
 
 +
 +
<h5>관련도서 및 추천도서</h5>
 +
 +
*  도서내검색<br>
 +
** http://books.google.com/books?q=
 +
** http://book.daum.net/search/contentSearch.do?query=
 +
*  도서검색<br>
 +
** http://books.google.com/books?q=
 +
** http://book.daum.net/search/mainSearch.do?query=
 +
** http://book.daum.net/search/mainSearch.do?query=
 +
 +
 
 +
 +
 
 +
 +
<h5>관련기사</h5>
 +
 +
*  네이버 뉴스 검색 (키워드 수정)<br>
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
 +
 
 +
 +
 
 +
 +
<h5>블로그</h5>
 +
 +
*  구글 블로그 검색<br>
 +
** http://blogsearch.google.com/blogsearch?q=
 +
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 +
* [http://math.dongascience.com/ 수학동아]
 +
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 +
* [http://betterexplained.com/ BetterExplained]

2009년 12월 23일 (수) 08:04 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 유리수\(a\in\mathbb{Q}\)에 대하여 \(x=a\pi\)일 때 삼각함수의 값을 구하는 문제는 수학적으로 중요
  • 원분다항식(cyclotomic polynomial)의 해와 깊은 관련이 있음
  • 가령 가우스와 정17각형의 작도는 다음과 같은 코사인 값을 얻는 것과 같은 문제
    \(\cos \frac{2\pi}{17}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{16}\)

 

 

삼각함수의 값

\(\cos {\frac{2\pi}{1}} = 1\)

\(\cos {\frac{2\pi}{2}} = -1\)

\(\cos {\frac{2\pi}{3}} = -\frac{1}{2}\)

\(\cos\frac{2\pi}{4}=0\)

\(\cos\frac{2\pi}{5}=\frac{\sqrt5 -1}{4}\)

\(\cos\frac{2\pi}{6}=\frac{1}{2}\)

\(\cos\frac{2\pi}{7}=\frac{-1+\sqrt[3]{\frac{7}{2} \left(1-3 \sqrt{-3}\right)}+\sqrt[3]{\frac{7}{2} \left(1+3 \sqrt{-3}\right)}}{6}\)

  • \(x^3 + x^2 - 2 x - 1=0\) 을 풀어야 함

\(\cos\frac{2\pi}{8}=\frac{\sqrt{2}}{2}\)

\(\cos \frac{2\pi}{17}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{16}\)

 

\(\cos\frac{\pi}{4}=\cos\frac{\pi}{2^2}= \frac{\sqrt{2}}{2}\)

\(\cos \frac{\pi}{8}=\cos\frac{\pi}{2^3}= \frac{\sqrt{2+\sqrt{2}}}{2}\)

\(\cos \frac{\pi}{16}=\cos\frac{\pi}{2^4}= \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}\)

\(\cos \frac{\pi}{32}=\cos\frac{\pi}{2^5}= \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2}\)

\(\cos \frac{\pi}{64}=\cos\frac{\pi}{2^6}= \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}{2}\)

\(\tan \frac{\pi}{8}=\sqrt{2}-1\)

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그