"숫자 163"의 두 판 사이의 차이
45번째 줄: | 45번째 줄: | ||
<math>j(\tau) = \frac{1}{{q}} + 744 + 196884{q} + 21493760{q}^2 + 864299970{q}^3 + \cdots</math><br> 이 때, <math>{q} = e^{2\pi i\tau}</math> | <math>j(\tau) = \frac{1}{{q}} + 744 + 196884{q} + 21493760{q}^2 + 864299970{q}^3 + \cdots</math><br> 이 때, <math>{q} = e^{2\pi i\tau}</math> | ||
<math> j(\tau)= {E_4(\tau)^3\over \Delta(\tau)}= q^{-1}+744+196884q+21493760q^2+\cdots</math> | <math> j(\tau)= {E_4(\tau)^3\over \Delta(\tau)}= q^{-1}+744+196884q+21493760q^2+\cdots</math> | ||
+ | |||
+ | <math> E_4(\tau)=1+240\sum_{n>0}\sigma_3(n)q^n= 1+240q+2160q^2+\cdots</math> | ||
<br> | <br> | ||
− | + | ||
− | + | <math>(\sigma_3(n)=\sum_{d|n}d^3)</math> | |
<math>\Delta(\tau)= q\prod_{n>0}(1-q^n)^{24}= q-24q+252q^2+\cdots</math> | <math>\Delta(\tau)= q\prod_{n>0}(1-q^n)^{24}= q-24q+252q^2+\cdots</math> | ||
+ | |||
+ | <math> j(\frac {-1+\sqrt{-43}} {2})=884736744</math><br><br><math> j(\frac {-1+\sqrt{-67}} {2})=147197952744</math><br><br><math> j(\frac {-1+\sqrt{-163}} {2})=262537412640768744</math> | ||
114번째 줄: | 118번째 줄: | ||
<h5>참고할만한 자료</h5> | <h5>참고할만한 자료</h5> | ||
+ | * The Ramanujan Constant. An Essay on Elliptic Curves, Complex. Multiplication and Modular Forms.<br> | ||
+ | ** B.J.Green | ||
* [http://ko.wikipedia.org/wiki/%ED%9E%88%EA%B7%B8%EB%84%88_%EC%88%98 http://ko.wikipedia.org/wiki/히그너_수] | * [http://ko.wikipedia.org/wiki/%ED%9E%88%EA%B7%B8%EB%84%88_%EC%88%98 http://ko.wikipedia.org/wiki/히그너_수] | ||
* http://en.wikipedia.org/wiki/Heegner_number | * http://en.wikipedia.org/wiki/Heegner_number |
2009년 4월 28일 (화) 09:09 판
간단한 소개
\(\large e^{\pi \sqrt{163}}=262537412640768743.9999999999992500725\cdots\)
\(e^{\pi \sqrt{163}} - 262537412640768744 \approx 7.5 \times 10^{-13}\)
\(j({{\sqrt{-163}+1}\over{2}})\)
\(e^{\pi \sqrt{43}} = 884736743.9997774660349066619374620785\)
\(e^{\pi \sqrt{67}} = 147197952743.9999986624542245068292613\)
\(e^{\pi \sqrt{163}} = 262537412640768743.99999999999925007259\)
\(e^{\pi \sqrt{43}} \approx 884736744\)
\(e^{\pi \sqrt{67}} \approx 147197952744\)
\(e^{\pi \sqrt{163}} \approx 262537412640768744\)
셋 모두 끝 세 자리가 744
complex multiplication
j-invariant
\(j(\tau) = \frac{1}[[:틀:Q]] + 744 + 196884{q} + 21493760{q}^2 + 864299970{q}^3 + \cdots\)
이 때, \({q} = e^{2\pi i\tau}\)
\( j(\tau)= {E_4(\tau)^3\over \Delta(\tau)}= q^{-1}+744+196884q+21493760q^2+\cdots\)
\( E_4(\tau)=1+240\sum_{n>0}\sigma_3(n)q^n= 1+240q+2160q^2+\cdots\)
\((\sigma_3(n)=\sum_{d|n}d^3)\) \(\Delta(\tau)= q\prod_{n>0}(1-q^n)^{24}= q-24q+252q^2+\cdots\)
\( j(\frac {-1+\sqrt{-43}} {2})=884736744\)
\( j(\frac {-1+\sqrt{-67}} {2})=147197952744\)
\( j(\frac {-1+\sqrt{-163}} {2})=262537412640768744\)
하위주제들
하위페이지
재미있는 사실
관련된 단원
많이 나오는 질문
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
참고할만한 자료
- The Ramanujan Constant. An Essay on Elliptic Curves, Complex. Multiplication and Modular Forms.
- B.J.Green
- http://ko.wikipedia.org/wiki/히그너_수
- http://en.wikipedia.org/wiki/Heegner_number
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
관련기사
네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 피타고라스의 창[1]
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com