"숫자 67"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/1945272">이차 수체(quadratic number fields) 의 정수론</a>페이지로 이동하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> | ||
+ | |||
+ | * 복소 이차 수체 <math>\mathbb{Q}(\sqrt{-67})</math> 는 [[수체의 class number|class number]] 1이 된다 | ||
+ | * 세번째로 큰 비정규소수이 | ||
+ | * [[정규소수 (regular prime)]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>오일러의 소수생성다항식</h5> | ||
+ | |||
+ | * 다항식 <math>x^2+x+17</math>은 정수 <math>0\leq x \leq 15</math>에서 소수가 된다<br> <br> | ||
+ | |||
+ | |||
+ | |||
+ | <h5>라마누잔 수</h5> | ||
+ | |||
+ | * | ||
+ | * [http://www.wolframalpha.com/input/?i=Exp%5BPi+sqrt%5B67%5D%5D http://www.wolframalpha.com/input/?i=Exp[Pi+sqrt[67]]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>재미있는 사실</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>역사</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | * [[수학사연표 (역사)|수학사연표]] | ||
+ | * | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>메모</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 항목들</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5> | ||
+ | |||
+ | * http://www.google.com/dictionary?langpair=en|ko&q= | ||
+ | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
+ | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
+ | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>사전 형태의 자료</h5> | ||
+ | |||
+ | * [http://ko.wikipedia.org/wiki/67%28%EC%88%AB%EC%9E%90%29 http://ko.wikipedia.org/wiki/67(숫자)] | ||
+ | * [http://en.wikipedia.org/wiki/67_%28number%29 http://en.wikipedia.org/wiki/67_(number)] | ||
+ | * http://en.wikipedia.org/wiki/Heegner_number | ||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://www.wolframalpha.com/input/?i= | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
+ | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> | ||
+ | ** http://www.research.att.com/~njas/sequences/?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련논문</h5> | ||
+ | |||
+ | * http://www.jstor.org/action/doBasicSearch?Query= | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | <h5>관련도서 및 추천도서</h5> | ||
+ | |||
+ | * 도서내검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/contentSearch.do?query= | ||
+ | * 도서검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련기사</h5> | ||
+ | |||
+ | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>블로그</h5> | ||
+ | |||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | * [http://navercast.naver.com/science/list 네이버 오늘의과학] | ||
+ | * [http://math.dongascience.com/ 수학동아] | ||
+ | * [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS] | ||
+ | * [http://betterexplained.com/ BetterExplained] |
2010년 1월 2일 (토) 03:32 판
이 항목의 스프링노트 원문주소
개요
- 복소 이차 수체 \(\mathbb{Q}(\sqrt{-67})\) 는 class number 1이 된다
- 세번째로 큰 비정규소수이
- 정규소수 (regular prime)
오일러의 소수생성다항식
- 다항식 \(x^2+x+17\)은 정수 \(0\leq x \leq 15\)에서 소수가 된다
라마누잔 수
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/67(숫자)
- http://en.wikipedia.org/wiki/67_(number)
- http://en.wikipedia.org/wiki/Heegner_number
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)