"슈바르츠-크리스토펠 사상(Schwarz-Christoffel mappings)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | ||
− | * [[ | + | * [[슈바르츠-크리스토펠 사상(Schwarz-Christoffel mappings)]] |
+ | |||
+ | |||
49번째 줄: | 51번째 줄: | ||
− | + | <h5>관련된 항목들</h5> | |
− | |||
− | <h5>관련된 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* [[초기하 미분방정식(Hypergeometric differential equations)]] | * [[초기하 미분방정식(Hypergeometric differential equations)]] | ||
+ | * [[헤르만 슈바르츠 (1843-1921)]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
81번째 줄: | 62번째 줄: | ||
− | <h5> | + | <h5>관련도서</h5> |
* [http://www.amazon.com/Conformal-Mapping-Zeev-Nehari/dp/048661137X Conformal Mapping]<br> | * [http://www.amazon.com/Conformal-Mapping-Zeev-Nehari/dp/048661137X Conformal Mapping]<br> | ||
** Zeev Nehari, Dover Publications, 1982-1 | ** Zeev Nehari, Dover Publications, 1982-1 | ||
** [[1950524/attachments/2057891|Schwarz_functions_and_hypergeometric_differential_equation.pdf]] | ** [[1950524/attachments/2057891|Schwarz_functions_and_hypergeometric_differential_equation.pdf]] |
2010년 8월 15일 (일) 17:25 판
이 항목의 스프링노트 원문주소
개요
예
- 복소해석학의 리만 사상 정리 에 의하면, 아래 그림과 같은 단위원과 별모양(pentagram) 사이에는 전단사 복소해석함수가 존재.
- Schwarz-Christoffel mappings 은 이러한 사상을 다음과 같이 구체적으로 표현할 수 있게 해주는 공식.
\(f(z)=\int_0^z\frac{(1-z^5)^{\frac{2}{5}}}{(1+z^5)^{\frac{4}{5}}}dz\)
국소적인 이해
- 우선 \(z^{\lambda}\) 형태의 복소함수에 대해서 이해할 필요가 있음
- \(\lambda > 0\) 인 경우에 대해서 먼저 생각해보자
\(z^{\lambda}=e^{\lambda \ln z}= e^{\lambda (\ln |z|+i\arg z)}} =\exp(\ln |z|^{\lambda}+\lambda i \arg z)\) - 이 함수가 복소상반평면을 어떻게 변화시키는지 알아보기 위해 \(\arg z\)이 브랜치를 하나 고정하자
- \(z\) 가 실수라고 하자.
- \(z>0\) 이면 \(\arg z =0\)
- \(z<0\) 이면 \(\arg z =\pi\)
- 상반평면이 \(z^{\lambda}\) 에 의해 각도가 \(\lambda \pi\)인 두 직선으로 쌓인 영역으로 변화
- \(\lambda < 0\) 인 경우
등각사상으로서의 타원적분
- 타원적분
\(f(z)=\int_0^z\frac{dz}{\sqrt{(z+1)z(z-1)}}\) - 이러한 타원적분으로 주어진 함수가 등각사상으로서 어떤 성질을 알기 위해 국소적으로 보자면,
\(z=-1\) 근방에서 \(f(z) \approx (z+1)^{\frac{1}{2}}\)
\(z=0\) 근방에서 \(f(z) \approx z^{\frac{1}{2}}\)
\(z=1\) 근방에서 \(f(z) \approx (z-1)^{\frac{1}{2}}\)
관련된 항목들
관련도서
- Conformal Mapping
- Zeev Nehari, Dover Publications, 1982-1
- Schwarz_functions_and_hypergeometric_differential_equation.pdf