"에어리 (Airy) 함수와 미분방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (Pythagoras0(토론)의 편집을 http://bomber0.myid.net/의 마지막 버전으로 되돌림)
1번째 줄: 1번째 줄:
==개요==
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
  
* <math>y'' - xy = 0</math>
+
 
  
<math>\mathrm{Ai}(x) = \frac{1}{\pi} \int_0^\infty \cos
+
 
  
\left(\tfrac13t^3 + xt\right)\, dt,</math>
+
<h5>개요</h5>
  
<math>\mathrm{Bi}(x) = \frac{1}{\pi} \int_0^\infty \left
+
* <math>y'' - xy = 0</math>
  
[\exp\left(-\tfrac13t^3 + xt\right) + \sin\left(\tfrac13t^3
+
<math>\mathrm{Ai}(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\tfrac13t^3 + xt\right)\, dt,</math>
  
+ xt\right)\,\right]dt.,</math>
+
<math>\mathrm{Bi}(x) = \frac{1}{\pi} \int_0^\infty \left[\exp\left(-\tfrac13t^3 + xt\right) + \sin\left(\tfrac13t^3 + xt\right)\,\right]dt.,</math>
  
 
http://www.wolframalpha.com/input/?i=Ai%28x%29
 
http://www.wolframalpha.com/input/?i=Ai%28x%29
  
+
 
 +
 
 +
 
  
+
 
  
+
 
  
+
<h5 style="margin: 0px; line-height: 2em;">근사공식</h5>
  
==근사공식==
+
* [[안장점 근사]]<br><math>x>>0</math> 일 때,<br><math>\mathrm{Ai}(x) \sim \frac{e^{-\frac{2 x^{3/2}}{3}}}{2 \sqrt{\pi } \sqrt[4]{x}}</math><br><math>x<<0</math> 일 때,<br><math>\mathrm{Ai}(x) \sim  \frac{\sin \left(\frac{2 |x|^{3/2}}{3}+\frac{\pi }{4}\right)}{\sqrt{\pi } \sqrt[4]{|x|}}</math><br>
 +
* [http://www.math.umn.edu/%7Eymori/docs/teaching/fall08/airy.pdf Asymptotics of the Airy Function]<br>
  
* [[안장점 근사]]<br><math>x>>0</math> 일 때,<br><math>
+
 
  
\mathrm{Ai}(x) \sim \frac{e^{-\frac{2 x^{3/2}}{3}}}{2 \sqrt{\pi } \sqrt[4]{x}}</math><br><math>x<<0</math> 일 때,<br><math>\mathrm{Ai}(x) \sim  \frac{\sin \left(\frac{2|x|^{3/2}}{3}+\frac{\pi }{4}\right)}{\sqrt{\pi } \sqrt[4]{|x|}}</math><br>
+
 
* [http://www.math.umn.edu/%7Eymori/docs/teaching/fall08/airy.pdf Asymptotics of the Airy Function]<br>
+
 
 +
 
  
==역사==
+
<h5>역사</h5>
  
+
 
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
  
+
 
  
+
 
  
==메모==
+
<h5>메모</h5>
  
+
 
  
 
* Math Overflow http://mathoverflow.net/search?q=
 
* Math Overflow http://mathoverflow.net/search?q=
  
+
 
  
+
 
  
==관련된 항목들==
+
<h5>관련된 항목들</h5>
  
+
 
  
+
 
  
==수학용어번역==
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
  
 
*  단어사전<br>
 
*  단어사전<br>
65번째 줄: 69번째 줄:
 
** http://www.forvo.com/word/airy/#en
 
** http://www.forvo.com/word/airy/#en
 
** 아이어리?
 
** 아이어리?
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?
+
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
+
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?
+
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?
 
 
 
l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
*  
 
 
 
[http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?
 
 
 
bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A
 
 
 
%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE
 
 
 
%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학
 
 
 
용어한글화 게시판]
 
 
 
 
 
 
 
  
==매스매티카 파일 및 계산 리소스==
+
 
  
*
+
 
  
https://docs.google.com/file/d/0B8XXo8Tve1cxbl96STk2T3dpajg/
+
<h5>매스매티카 파일 및 계산 리소스</h5>
  
edit
+
* https://docs.google.com/file/d/0B8XXo8Tve1cxbl96STk2T3dpajg/edit
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* http://functions.wolfram.com/
* [http://dlmf.nist.gov/ NIST Digital Library of  
+
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 +
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 +
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 +
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
  
Mathematical Functions]
+
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz
 
  
and Stegun Handbook of mathematical functions]
+
 
* [http://www.research.att.com/%7Enjas/sequences/index.html
 
  
The On-Line Encyclopedia of Integer Sequences]
+
<h5>사전 형태의 자료</h5>
*
 
 
 
[http://numbers.computation.free.fr/Constants/constants.html
 
 
 
Numbers, constants and computation]
 
* [https://docs.google.com/open?
 
 
 
id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIx
 
 
 
NmIw 매스매티카 파일 목록]
 
 
 
 
 
 
 
 
 
==사전 형태의 자료==
 
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Airy_equation
 
* http://en.wikipedia.org/wiki/Airy_equation
 
* http://en.wikipedia.org/wiki/WKB_approximation
 
* http://en.wikipedia.org/wiki/WKB_approximation
* [http://eom.springer.de/default.htm The Online  
+
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
+
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
Encyclopaedia of Mathematics]
+
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
* [http://dlmf.nist.gov/ NIST Digital Library of  
 
 
 
Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical  
 
 
 
Equations]
 
  
+
 
  
+
 
  
==리뷰논문, 에세이, 강의노트==
+
<h5>리뷰논문, 에세이, 강의노트</h5>
  
+
 
  
+
 
  
+
 
  
==관련논문==
+
<h5>관련논문</h5>
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
156번째 줄: 120번째 줄:
 
* http://dx.doi.org/
 
* http://dx.doi.org/
  
+
 
  
+
 
  
==관련도서==
+
<h5>관련도서</h5>
  
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
** http://book.daum.net/search/contentSearch.do?query=

2012년 10월 21일 (일) 13:08 판

이 항목의 수학노트 원문주소

 

 

개요
  • \(y'' - xy = 0\)

\(\mathrm{Ai}(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\tfrac13t^3 + xt\right)\, dt,\)

\(\mathrm{Bi}(x) = \frac{1}{\pi} \int_0^\infty \left[\exp\left(-\tfrac13t^3 + xt\right) + \sin\left(\tfrac13t^3 + xt\right)\,\right]dt.,\)

http://www.wolframalpha.com/input/?i=Ai%28x%29

 

 

 

 

근사공식
  • 안장점 근사
    \(x>>0\) 일 때,
    \(\mathrm{Ai}(x) \sim \frac{e^{-\frac{2 x^{3/2}}{3}}}{2 \sqrt{\pi } \sqrt[4]{x}}\)
    \(x<<0\) 일 때,
    \(\mathrm{Ai}(x) \sim \frac{\sin \left(\frac{2 |x|^{3/2}}{3}+\frac{\pi }{4}\right)}{\sqrt{\pi } \sqrt[4]{|x|}}\)
  • Asymptotics of the Airy Function

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서