"에어리 (Airy) 함수와 미분방정식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “==관련논문== * http://www.jstor.org/action/doBasicSearch?Query= * http://www.ams.org/mathscinet * http://dx.doi.org/” 문자열을 “” 문자열로) |
Pythagoras0 (토론 | 기여) |
||
50번째 줄: | 50번째 줄: | ||
==관련된 항목들== | ==관련된 항목들== | ||
− | + | * 점근 급수(asymptotic series) | |
− | |||
− | |||
− | |||
==수학용어번역== | ==수학용어번역== |
2012년 11월 2일 (금) 13:48 판
개요
- \(y'' - xy = 0\)
\(\mathrm{Ai}(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\tfrac13t^3 + xt\right)\, dt,\)
\(\mathrm{Bi}(x) = \frac{1}{\pi} \int_0^\infty \left[\exp\left(-\tfrac13t^3 + xt\right) + \sin\left(\tfrac13t^3 + xt\right)\,\right]dt.,\)
http://www.wolframalpha.com/input/?i=Ai%28x%29
근사공식
- 안장점 근사
\(x>>0\) 일 때,
\(\mathrm{Ai}(x) \sim \frac{e^{-\frac{2 x^{3/2}}{3}}}{2 \sqrt{\pi } \sqrt[4]{x}}\)
\(x<<0\) 일 때,
\(\mathrm{Ai}(x) \sim \frac{\sin \left(\frac{2 |x|^{3/2}}{3}+\frac{\pi }{4}\right)}{\sqrt{\pi } \sqrt[4]{|x|}}\) - Asymptotics of the Airy Function
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
- 점근 급수(asymptotic series)
수학용어번역
- 단어사전
- 발음사전
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxbl96STk2T3dpajg/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Airy_equation
- http://en.wikipedia.org/wiki/WKB_approximation
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations