"에어리 (Airy) 함수와 미분방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “==관련논문== * http://www.jstor.org/action/doBasicSearch?Query= * http://www.ams.org/mathscinet * http://dx.doi.org/” 문자열을 “” 문자열로)
50번째 줄: 50번째 줄:
  
 
==관련된 항목들==
 
==관련된 항목들==
 
+
* 점근 급수(asymptotic series)
 
 
 
 
  
 
==수학용어번역==
 
==수학용어번역==

2012년 11월 2일 (금) 13:48 판

개요

  • \(y'' - xy = 0\)

\(\mathrm{Ai}(x) = \frac{1}{\pi} \int_0^\infty \cos\left(\tfrac13t^3 + xt\right)\, dt,\)

\(\mathrm{Bi}(x) = \frac{1}{\pi} \int_0^\infty \left[\exp\left(-\tfrac13t^3 + xt\right) + \sin\left(\tfrac13t^3 + xt\right)\,\right]dt.,\)

http://www.wolframalpha.com/input/?i=Ai%28x%29





근사공식

  • 안장점 근사
    \(x>>0\) 일 때,
    \(\mathrm{Ai}(x) \sim \frac{e^{-\frac{2 x^{3/2}}{3}}}{2 \sqrt{\pi } \sqrt[4]{x}}\)
    \(x<<0\) 일 때,
    \(\mathrm{Ai}(x) \sim \frac{\sin \left(\frac{2 |x|^{3/2}}{3}+\frac{\pi }{4}\right)}{\sqrt{\pi } \sqrt[4]{|x|}}\)
  • Asymptotics of the Airy Function




역사



메모



관련된 항목들

  • 점근 급수(asymptotic series)

수학용어번역



매스매티카 파일 및 계산 리소스



사전 형태의 자료



리뷰논문, 에세이, 강의노트