"열방정식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
111번째 줄: | 111번째 줄: | ||
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5> | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5> | ||
+ | |||
+ | * Théorie analytique de la chaleur<br> | ||
* 도서내검색<br> | * 도서내검색<br> |
2010년 4월 27일 (화) 20:11 판
이 항목의 스프링노트 원문주소
개요
- 열의 전달을 기술하는 편미분방정식
\(\frac{\partial u}{\partial t} -k\left(\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2u}{\partial z^2}\right)=0\)
\(\frac{\partial u}{\partial t} = k \nabla^2 u\)
\(u(x,t)=e^{-k n^2 t} e^{ik nx}\) 는 위의 열방정식의 해이다.
자코비세타함수와 열방정식
\(\vartheta (x,it)=1+2\sum_{n=1}^\infty \exp(-\pi n^2 t) \cos(2\pi nx)\)
\(\frac{\partial}{\partial t} \vartheta(x,it)=\frac{1}{4\pi} \frac{\partial^2}{\partial x^2} \vartheta(x,it)\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Heat_equation
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- Théorie analytique de la chaleur
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)