"열방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
63번째 줄: 63번째 줄:
  
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
 +
 +
* http://www.cheonan46.go.kr//89<br>
  
 
 
 
 
112번째 줄: 114번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
  
* Théorie analytique de la chaleur<br>
+
* [http://books.google.com/books?id=JXtJAAAAYAAJ&printsec=frontcover&hl=ko&source=gbs_v2_summary_r&cad=0#v=onepage&q&f=false Théorie analytique de la chaleur]<br>
  
 
*  도서내검색<br>
 
*  도서내검색<br>

2010년 8월 2일 (월) 18:44 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 열의 전달을 기술하는 편미분방정식

\(\frac{\partial u}{\partial t} -k\left(\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2u}{\partial z^2}\right)=0\)

\(\frac{\partial u}{\partial t} = k \nabla^2 u\)

 

\(u(x,t)=e^{-k n^2 t} e^{ik nx}\) 는 위의 열방정식의 해이다.

 

 

 

자코비세타함수와 열방정식

\(\vartheta (x,it)=1+2\sum_{n=1}^\infty \exp(-\pi n^2 t) \cos(2\pi nx)\)

\(\frac{\partial}{\partial t} \vartheta(x,it)=\frac{1}{4\pi} \frac{\partial^2}{\partial x^2} \vartheta(x,it)\)

 

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그