"울프람알파의 활용"의 두 판 사이의 차이
42번째 줄: | 42번째 줄: | ||
<h5>그래프 그리기</h5> | <h5>그래프 그리기</h5> | ||
+ | |||
+ | <math>r=\cos \frac{\theta}{3}</math> | ||
+ | |||
+ | [/pages/4176465/attachments/2110527 MSP74719784071iad69b2900005cid5ibigi61dg94.gif] | ||
+ | |||
+ | [http://www.wolframalpha.com/input/?i=r%3Dcos+%28theta/3%29 http://www.wolframalpha.com/input/?i=r%3Dcos+(theta/3)] | ||
+ | |||
+ | |||
+ | |||
+ | <math>r=1+2\cos\theta</math> | ||
+ | |||
+ | [/pages/4176465/attachments/2110537 MSP11271978443hf7aa7h2f00002bd5bh2db919dc1f.gif] | ||
+ | |||
+ | [http://www.wolframalpha.com/input/?i=r%3D1%2B2+cos+%28theta%29 http://www.wolframalpha.com/input/?i=r%3D1%2B2+cos+(theta)] | ||
+ | |||
+ | |||
+ | |||
+ | <math>r=2+\sin 3\theta</math> | ||
+ | |||
+ | [http://www.wolframalpha.com/input/?i=r%3D2%2Bsin%283thetA%29 http://www.wolframalpha.com/input/?i=r%3D2%2Bsin(3thetA)] | ||
+ | |||
+ | [/pages/4176465/attachments/2110539 MSP47019784919haafi5hc00002h164hgd33f4i46i.gif] | ||
+ | |||
+ | |||
+ | |||
+ | <math>r=1+2\sin 3\theta</math> | ||
+ | |||
+ | [http://www.wolframalpha.com/input/?i=r%3D1%2B2sin%283theta%29 http://www.wolframalpha.com/input/?i=r%3D1%2B2sin(3theta)] | ||
+ | |||
+ | [/pages/4176465/attachments/2110535 MSP6981978475e4574h83h00003a7ga0a9g5d06c13.gif] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | '''10.4.44.''' | ||
+ | |||
+ | [http://www.wolframalpha.com/input/?i=%28r-%288%2B8sin+theta%29%29%28r+sin+theta+-4%29%3D0 http://www.wolframalpha.com/input/?i=(r-(8%2B8sin+theta))(r+sin+theta+-4)%3D0] | ||
+ | |||
+ | [/pages/4176465/attachments/2110589 1MSP761197847h1hg25e7he00004g3ehh9ag590ea81.gif] | ||
+ | |||
+ | Note that <math>2\sin^2 \alpha +2\sin \alpha-1=0</math>. | ||
+ | |||
+ | Since <math>0< \alpha <\frac{\pi}{2}</math>, <math>\sin \alpha =\frac{\sqrt 3 -1}{2}</math> and <math>\cos \alpha =\sqrt{\frac{\sqrt 3}{2}}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\frac{1}{2}\int_{\alpha}^{\pi-\alpha}r^2 d\theta=\int_{\alpha}^{\pi/2}r^2 d\theta=\int_{\alpha}^{\pi/2}64(1+\sin\theta)^2d\theta</math> | ||
+ | |||
+ | <math>=64\int_{\alpha}^{\pi/2}(1+\sin\theta)^2d\theta=64\int_{\alpha}^{\pi/2}1+2\sin\theta+\sin^2\theta d\theta</math> | ||
+ | |||
+ | <math>=64[\frac{3}{2}\theta - 2 \cos \theta- \frac{1}{4}\sin 2\theta]_{\alpha}^{\pi/2}=[96\theta - 128 \cos \theta- 16\sin 2\theta]_{\alpha}^{\pi/2}</math> | ||
+ | |||
+ | <math>=[96\theta - 128 \cos \theta- 16\sin 2\theta]_{\alpha}^{\pi/2}=48\pi-96\alpha+128\cos \alpha+16\sin 2\alpha</math> | ||
+ | |||
+ | We need to subtract from this the area of the triangle which is given by : | ||
+ | |||
+ | <math>2\times \frac{1}{2}\cdot 4 (8+8\sin\alpha)\sin (\pi/2-\alpha)=32(1+\sin\alpha)\cos \alpha=32\cos \alpha+16 \sin 2\alpha</math> | ||
+ | |||
+ | So the area will be given by : | ||
+ | |||
+ | <math>48\pi-96\alpha+128\cos \alpha+16\sin 2\alpha-(32\cos \alpha+16 \sin 2\alpha)=48\pi-96\alpha+96\cos \alpha\approx 204.16</math> | ||
+ | |||
+ | [http://www.wolframalpha.com/input/?i=N%5B48pi+-96%28arcsin%7B%28sqrt+3+-+1%29/2%7D%29%2B96%28sqrt%28%28sqrt+3%29/2%29%29,10%5D http://www.wolframalpha.com/input/?i=N[48pi+-96(arcsin{(sqrt+3+-+1)/2})%2B96(sqrt((sqrt+3)/2)),10]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | '''10.4.55.''' | ||
+ | |||
+ | (b) | ||
+ | |||
+ | <math>r^2=\cos 2\theta</math> | ||
+ | |||
+ | [/pages/4176465/attachments/2110541 MSP71919784049c09bb98700001095e8fadhf5gc4d.gif] | ||
+ | |||
+ | [http://www.wolframalpha.com/input/?i=r%5E2%3Dcos+%282theta%29 http://www.wolframalpha.com/input/?i=r^2%3Dcos+(2theta)] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
2011년 1월 29일 (토) 18:17 판
이 항목의 스프링노트 원문주소
개요
- 울프람 알파
- 연산능력을 갖춘 지식엔진
- http://www.wolframalpha.com
- http://mathdl.maa.org/images/upload_library/23/karaali/alpha/index.html
문제풀이와 울프람알파
방정식의 풀이
숙제와 울프람알파
그래프 그리기
\(r=\cos \frac{\theta}{3}\)
[/pages/4176465/attachments/2110527 MSP74719784071iad69b2900005cid5ibigi61dg94.gif]
http://www.wolframalpha.com/input/?i=r%3Dcos+(theta/3)
\(r=1+2\cos\theta\)
[/pages/4176465/attachments/2110537 MSP11271978443hf7aa7h2f00002bd5bh2db919dc1f.gif]
http://www.wolframalpha.com/input/?i=r%3D1%2B2+cos+(theta)
\(r=2+\sin 3\theta\)
http://www.wolframalpha.com/input/?i=r%3D2%2Bsin(3thetA)
[/pages/4176465/attachments/2110539 MSP47019784919haafi5hc00002h164hgd33f4i46i.gif]
\(r=1+2\sin 3\theta\)
http://www.wolframalpha.com/input/?i=r%3D1%2B2sin(3theta)
[/pages/4176465/attachments/2110535 MSP6981978475e4574h83h00003a7ga0a9g5d06c13.gif]
10.4.44.
http://www.wolframalpha.com/input/?i=(r-(8%2B8sin+theta))(r+sin+theta+-4)%3D0
[/pages/4176465/attachments/2110589 1MSP761197847h1hg25e7he00004g3ehh9ag590ea81.gif]
Note that \(2\sin^2 \alpha +2\sin \alpha-1=0\).
Since \(0< \alpha <\frac{\pi}{2}\), \(\sin \alpha =\frac{\sqrt 3 -1}{2}\) and \(\cos \alpha =\sqrt{\frac{\sqrt 3}{2}}\)
\(\frac{1}{2}\int_{\alpha}^{\pi-\alpha}r^2 d\theta=\int_{\alpha}^{\pi/2}r^2 d\theta=\int_{\alpha}^{\pi/2}64(1+\sin\theta)^2d\theta\)
\(=64\int_{\alpha}^{\pi/2}(1+\sin\theta)^2d\theta=64\int_{\alpha}^{\pi/2}1+2\sin\theta+\sin^2\theta d\theta\)
\(=64[\frac{3}{2}\theta - 2 \cos \theta- \frac{1}{4}\sin 2\theta]_{\alpha}^{\pi/2}=[96\theta - 128 \cos \theta- 16\sin 2\theta]_{\alpha}^{\pi/2}\)
\(=[96\theta - 128 \cos \theta- 16\sin 2\theta]_{\alpha}^{\pi/2}=48\pi-96\alpha+128\cos \alpha+16\sin 2\alpha\)
We need to subtract from this the area of the triangle which is given by \[2\times \frac{1}{2}\cdot 4 (8+8\sin\alpha)\sin (\pi/2-\alpha)=32(1+\sin\alpha)\cos \alpha=32\cos \alpha+16 \sin 2\alpha\]
So the area will be given by \[48\pi-96\alpha+128\cos \alpha+16\sin 2\alpha-(32\cos \alpha+16 \sin 2\alpha)=48\pi-96\alpha+96\cos \alpha\approx 204.16\]
http://www.wolframalpha.com/input/?i=N[48pi+-96(arcsin{(sqrt+3+-+1)/2})%2B96(sqrt((sqrt+3)/2)),10]
10.4.55.
(b)
\(r^2=\cos 2\theta\)
[/pages/4176465/attachments/2110541 MSP71919784049c09bb98700001095e8fadhf5gc4d.gif]
http://www.wolframalpha.com/input/?i=r^2%3Dcos+(2theta)
사용예
- http://www.wolframalpha.com/input/?i=r^2
- http://www.wolframalpha.com/input/?i=
- http://www.wolframalpha.com/input/?i=
- http://www.wolframalpha.com/input/?i=