"이중적분과 바젤문제"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
7번째 줄: | 7번째 줄: | ||
− | + | ==개요</h5> | |
* <math>\zeta(2) ={\pi^2}/{6}</math> 의 계산을 다음 이중적분을 이용해 할 수 있다<br><math>\int _0^1\int _0^1\frac{1}{1-x^2 y^2}dxdy </math><br> | * <math>\zeta(2) ={\pi^2}/{6}</math> 의 계산을 다음 이중적분을 이용해 할 수 있다<br><math>\int _0^1\int _0^1\frac{1}{1-x^2 y^2}dxdy </math><br> | ||
16번째 줄: | 16번째 줄: | ||
− | + | ==단계 1</h5> | |
<math>I = \int _0^1\int _0^1\frac{1}{1-x^2 y^2}dxdy = \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\frac{1}{9^2}+\cdots</math> 임을 먼저 보이자. | <math>I = \int _0^1\int _0^1\frac{1}{1-x^2 y^2}dxdy = \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\frac{1}{9^2}+\cdots</math> 임을 먼저 보이자. | ||
28번째 줄: | 28번째 줄: | ||
− | + | ==단계 2</h5> | |
<math>I = \int _0^1\int _0^1\frac{1}{1-x^2 y^2}dxdy</math> 에서 <math>x=\sin (u) \sec (v)</math>, <math>y=\sec (u) \sin (v)</math> 로 치환을 하자. | <math>I = \int _0^1\int _0^1\frac{1}{1-x^2 y^2}dxdy</math> 에서 <math>x=\sin (u) \sec (v)</math>, <math>y=\sec (u) \sin (v)</math> 로 치환을 하자. | ||
42번째 줄: | 42번째 줄: | ||
− | + | ==단계 3</h5> | |
<math>I = \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\frac{1}{9^2}+\cdots = \frac{3}{4}\zeta(2)</math> 임을 보이자. | <math>I = \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\frac{1}{9^2}+\cdots = \frac{3}{4}\zeta(2)</math> 임을 보이자. | ||
60번째 줄: | 60번째 줄: | ||
− | + | ==역사</h5> | |
71번째 줄: | 71번째 줄: | ||
− | + | ==메모</h5> | |
81번째 줄: | 81번째 줄: | ||
− | + | ==관련된 항목들</h5> | |
87번째 줄: | 87번째 줄: | ||
− | + | ==매스매티카 파일 및 계산 리소스</h5> | |
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxNjJjZjE4ZDAtNmRiOS00ZWRmLWEwODctNGYzY2VhNjQwYWI0&sort=name&layout=list&num=50 | * https://docs.google.com/leaf?id=0B8XXo8Tve1cxNjJjZjE4ZDAtNmRiOS00ZWRmLWEwODctNGYzY2VhNjQwYWI0&sort=name&layout=list&num=50 | ||
118번째 줄: | 118번째 줄: | ||
− | + | ==사전 형태의 자료</h5> | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
130번째 줄: | 130번째 줄: | ||
− | + | ==리뷰논문, 에세이, 강의노트</h5> | |
138번째 줄: | 138번째 줄: | ||
− | + | ==관련논문</h5> | |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
148번째 줄: | 148번째 줄: | ||
− | + | ==관련도서</h5> | |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 11월 1일 (목) 02:11 판
이 항목의 수학노트 원문주소
==개요
- \(\zeta(2) ={\pi^2}/{6}\) 의 계산을 다음 이중적분을 이용해 할 수 있다
\(\int _0^1\int _0^1\frac{1}{1-x^2 y^2}dxdy \) - 또 다른 이중적분
\(\int _0^1\int _0^1\frac{1}{1-x y}dxdy \)
도 사용할 수 있는데, 이는 다이로그 함수(dilogarithm) 와 관계있다
==단계 1
\(I = \int _0^1\int _0^1\frac{1}{1-x^2 y^2}dxdy = \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\frac{1}{9^2}+\cdots\) 임을 먼저 보이자.
\(\int_{0}^{1} \frac{1}{1-y^2 x^2} \, dx = \frac{\tanh ^{-1}(y)}{y}=1+\frac{y^2}{3}+\frac{y^4}{5}+\frac{y^6}{7}+\frac{y^8}{9}+\frac{y^{10}}{11}+\cdots\) 이므로
\(I = \int _0^1\int _0^1\frac{1}{1-x^2 y^2}dxdy = \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\frac{1}{9^2}+\cdots\) 가 성립한다.
==단계 2
\(I = \int _0^1\int _0^1\frac{1}{1-x^2 y^2}dxdy\) 에서 \(x=\sin (u) \sec (v)\), \(y=\sec (u) \sin (v)\) 로 치환을 하자.
자코비안은 다음과 같다.
\(\left|\left( \begin{array}{cc} \cos (u) \sec (v) & \sin (u) \tan (v) \sec (v) \\ \tan (u) \sec (u) \sin (v) & \sec (u) \cos (v) \end{array} \right)\right|=1-\tan ^2(u) \tan ^2(v)\)
\(I=\int_{0}^{\pi/2} \int_{0}^{\pi/2-v} \frac{1}{1-\tan ^2(u) \tan ^2(v)}\left(1-\tan ^2(u) \tan ^2(v)\right) dudv =\frac{\pi ^2}{8}\)
==단계 3
\(I = \frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\frac{1}{9^2}+\cdots = \frac{3}{4}\zeta(2)\) 임을 보이자.
(증명)
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\cdots = \frac{1}{4}\zeta(2)\)
따라서
\(\zeta(2) = I + \frac{1}{4}\zeta(2)\) ■
==역사
==메모
- Math Overflow http://mathoverflow.net/search?q=
==관련된 항목들
==매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxNjJjZjE4ZDAtNmRiOS00ZWRmLWEwODctNGYzY2VhNjQwYWI0&sort=name&layout=list&num=50
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
==사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
==리뷰논문, 에세이, 강의노트
==관련논문
==관련도서