"자코비 다항식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “==관련논문== * http://www.jstor.org/action/doBasicSearch?Query= * http://www.ams.org/mathscinet * http://dx.doi.org/” 문자열을 “” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “오늘의과학” 문자열을 “” 문자열로) |
||
157번째 줄: | 157번째 줄: | ||
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
** http://blogsearch.google.com/blogsearch?q= | ** http://blogsearch.google.com/blogsearch?q= | ||
− | * [http://navercast.naver.com/science/list | + | * [http://navercast.naver.com/science/list 네이버 ] |
2012년 11월 2일 (금) 07:48 판
이 항목의 스프링노트 원문주소
개요
- 직교다항식
정의
- 초기하급수(Hypergeometric series)를 통해 정의된다
\(P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!} \,_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\frac{1-z}{2}\right)\) - 다항식표현
\(P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+n+1)}{n!\Gamma (\alpha+\beta+n+1)} \sum_{m=0}^n {n\choose m} \frac{\Gamma (\alpha + \beta + n + m + 1)}{\Gamma (\alpha + m + 1)} \left(\frac{z-1}{2}\right)^m\)
3항 점화식
미분방정식
- 자 코비 다항식은 다음을 만족시킨다
\((1-x^2)y'' + ( \beta-\alpha - (\alpha + \beta + 2)x )y'+ n(n+\alpha+\beta+1) y = 0\)
직교성
- weight함수와 구간
\(w(x) = (1-x)^{\alpha} (1+x)^{\beta}\)
\([-1,1]\) - \(m\neq n\) 일 때
\(\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= 0\) - \(m=n\) 일 때
\(\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}\)
예 \(\alpha=2,\beta=2,m=n=2\)
\(\int_{-1}^1 (1-x)^{\frac{1}{2}} (1+x)^{\frac{1}{2}} P_2^{(\frac{1}{2},\frac{1}{2})} (x)P_2^{(\frac{1}{2},\frac{1}{2})} (x) \; dx= \frac{4}{6} \frac{\Gamma(3+\frac{1}{2})\Gamma(3+\frac{1}{2})}{\Gamma(4)2!}=\frac{4(\frac{15\sqrt{\pi}}{8})^2}{12\cdot 3!}=\frac{25\pi}{128}\)
목록
- 매쓰매티카 코드
- Do[Print["P_",i,"(z)=",JacobiP[i,a,b,z]],{i,0,4}]
P_0(z)=1
P_1(z)=1/2 (a-b+(2+a+b) z)
P_2(z)=1/2 (1+a) (2+a)+1/2 (2+a) (3+a+b) (-1+z)+1/8 (3+a+b) (4+a+b) (-1+z)^2
P_3(z)=1/6 (1+a) (2+a) (3+a)+1/4 (2+a) (3+a) (4+a+b) (-1+z)+1/8 (3+a) (4+a+b) (5+a+b) (-1+z)^2+1/48 (4+a+b) (5+a+b) (6+a+b) (-1+z)^3
P_4(z)=1/24 (1+a) (2+a) (3+a) (4+a)+1/12 (2+a) (3+a) (4+a) (5+a+b) (-1+z)+1/16 (3+a) (4+a) (5+a+b) (6+a+b) (-1+z)^2+1/48 (4+a) (5+a+b) (6+a+b) (7+a+b) (-1+z)^3+1/384 (5+a+b) (6+a+b) (7+a+b) (8+a+b) (-1+z)^4
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Jacobi_polynomials
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
- 도 서검색
관 련기사
- 네이버 뉴스 검색 (키워드 수정)