"정다각형의 작도"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
2번째 줄: 2번째 줄:
  
 
*  정n각형이 자와 컴파스로 작도가능 <math>\iff</math><math>n=2^k p_1 p_2 \cdots p_r</math>  (k ,r은 0이상의 정수, <math>p_1, p_2, \cdots, p_r</math> 은 서로 다른 페르마소수)<br>
 
*  정n각형이 자와 컴파스로 작도가능 <math>\iff</math><math>n=2^k p_1 p_2 \cdots p_r</math>  (k ,r은 0이상의 정수, <math>p_1, p_2, \cdots, p_r</math> 은 서로 다른 페르마소수)<br>
** 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, ... (Sloane's
+
** 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, ... ([http://www.research.att.com/%7Enjas/sequences/A003401 Sloane's A003401])
 
**  페르마소수란 <math>2^{2^m}+1</math> 형태의 소수<br>
 
**  페르마소수란 <math>2^{2^m}+1</math> 형태의 소수<br>
 
*** 3,5,17,257, 65537 다섯 가지만 알려져 있음.
 
*** 3,5,17,257, 65537 다섯 가지만 알려져 있음.
88번째 줄: 88번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Constructible_polygon
 
* http://en.wikipedia.org/wiki/Constructible_polygon
 +
* http://mathworld.wolfram.com/ConstructiblePolygon.html
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=

2009년 4월 20일 (월) 20:31 판

간단한 소개
  • 정n각형이 자와 컴파스로 작도가능 \(\iff\)\(n=2^k p_1 p_2 \cdots p_r\)  (k ,r은 0이상의 정수, \(p_1, p_2, \cdots, p_r\) 은 서로 다른 페르마소수)
    • 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, ... (Sloane's A003401)
    • 페르마소수란 \(2^{2^m}+1\) 형태의 소수
      • 3,5,17,257, 65537 다섯 가지만 알려져 있음.
  • 정7각형은 작도가 불가능함.
  • \(\cos {\frac{2\pi}{n}}\) 또는 \(\sin {\frac{2\pi}{n}}\) 의 값을, 유리수에서 시작하여, 사칙연산과 제곱근을 통해 표현할 수 있는가의 문제

 

 

 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

 

관련기사

네이버 뉴스 검색 (키워드 수정)

 

 

블로그

 

이미지 검색

 

동영상