"교란순열 (derangement)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
  
 
* [[derangement]]
 
* [[derangement]]
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
  
 
* 고정점을 갖지 않는 순열의 개수(number of permutations of n points without fixed points)
 
* 고정점을 갖지 않는 순열의 개수(number of permutations of n points without fixed points)
19번째 줄: 19번째 줄:
 
 
 
 
  
==<math>D_4</math>의 경우</h5>
+
==<math>D_4</math>의 경우==
  
 
예를 들어 1,2,3,4 네 사람이 있는 경우를 생각해 보자. 말을 줄이기 위해, 기호를 하나 정의한다. (abc…d) 라는 것은 a는 b의 등을 밀고, b는 c의 등을 밀고, … , d는 a의 등을 미는 것을 뜻한다. 1,2,3,4 네 명이서 서로 등을 밀어 주는 경우의 수는 다음과 같이 셀 수 있다.
 
예를 들어 1,2,3,4 네 사람이 있는 경우를 생각해 보자. 말을 줄이기 위해, 기호를 하나 정의한다. (abc…d) 라는 것은 a는 b의 등을 밀고, b는 c의 등을 밀고, … , d는 a의 등을 미는 것을 뜻한다. 1,2,3,4 네 명이서 서로 등을 밀어 주는 경우의 수는 다음과 같이 셀 수 있다.
31번째 줄: 31번째 줄:
 
 
 
 
  
==점화식</h5>
+
==점화식==
  
 
* <math>D_n=(n-1)(D_{n-1}+D_{n-2})</math>
 
* <math>D_n=(n-1)(D_{n-1}+D_{n-2})</math>
41번째 줄: 41번째 줄:
 
 
 
 
  
==생성함수</h5>
+
==생성함수==
  
 
*  지수생성함수는 다음과 같다<br><math>f(x)=\sum_{n=0}^{\infty}\frac{D_n}{n!}x^n=\frac{e^{-x}}{1-x}</math><br>
 
*  지수생성함수는 다음과 같다<br><math>f(x)=\sum_{n=0}^{\infty}\frac{D_n}{n!}x^n=\frac{e^{-x}}{1-x}</math><br>
63번째 줄: 63번째 줄:
 
 
 
 
  
==수열의 일반항</h5>
+
==수열의 일반항==
  
 
*  위에서 얻은 생성함수로부터 수열의 일반항을 구할 수 있다<br><math>\frac{D_n}{n!}=1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^n\frac{1}{n!}</math><br><math>D_n = n! \sum_{k=0}^{n}\frac{(-1)^k}{k!}</math><br>
 
*  위에서 얻은 생성함수로부터 수열의 일반항을 구할 수 있다<br><math>\frac{D_n}{n!}=1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^n\frac{1}{n!}</math><br><math>D_n = n! \sum_{k=0}^{n}\frac{(-1)^k}{k!}</math><br>
73번째 줄: 73번째 줄:
 
 
 
 
  
==포함과 배제의 원리의 응용</h5>
+
==포함과 배제의 원리의 응용==
  
 
* 집합 <math>\{1,2,\cdots,n\}</math>의 permutation 들의 집합을 A, i->i 인 permutation 들의 집합을 <math>A_i</math> 이라 하자
 
* 집합 <math>\{1,2,\cdots,n\}</math>의 permutation 들의 집합을 A, i->i 인 permutation 들의 집합을 <math>A_i</math> 이라 하자
81번째 줄: 81번째 줄:
 
 
 
 
  
==자연상수와의 관계</h5>
+
==자연상수와의 관계==
  
 
 
 
 
99번째 줄: 99번째 줄:
 
 
 
 
  
==역사</h5>
+
==역사==
  
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
107번째 줄: 107번째 줄:
 
 
 
 
  
==메모</h5>
+
==메모==
  
 
 
 
 
113번째 줄: 113번째 줄:
 
 
 
 
  
==관련된 항목들</h5>
+
==관련된 항목들==
  
 
* [[생성함수]]
 
* [[생성함수]]
122번째 줄: 122번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
  
 
* 난순열, 완전순열 등의 용어가 활용되고 있음
 
* 난순열, 완전순열 등의 용어가 활용되고 있음
134번째 줄: 134번째 줄:
 
 
 
 
  
==사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* [http://ko.wikipedia.org/wiki/%EC%99%84%EC%A0%84%EC%88%9C%EC%97%B4 http://ko.wikipedia.org/wiki/완전순열]
 
* [http://ko.wikipedia.org/wiki/%EC%99%84%EC%A0%84%EC%88%9C%EC%97%B4 http://ko.wikipedia.org/wiki/완전순열]
148번째 줄: 148번째 줄:
 
 
 
 
  
==관련논문</h5>
+
==관련논문==
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
155번째 줄: 155번째 줄:
 
 
 
 
  
==관련도서 및 추천도서</h5>
+
==관련도서 및 추천도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>
169번째 줄: 169번째 줄:
 
 
 
 
  
==관련기사</h5>
+
==관련기사==
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
180번째 줄: 180번째 줄:
 
 
 
 
  
==블로그</h5>
+
==블로그==
  
 
* [http://bomber0.byus.net/index.php/2008/07/26/696 derangement : 목욕탕에서 서로 등을 밀어주는 경우의 수와 자연상수]<br>
 
* [http://bomber0.byus.net/index.php/2008/07/26/696 derangement : 목욕탕에서 서로 등을 밀어주는 경우의 수와 자연상수]<br>

2012년 11월 1일 (목) 08:37 판

이 항목의 스프링노트 원문주소==    
개요==
  • 고정점을 갖지 않는 순열의 개수(number of permutations of n points without fixed points)
  • n명의 사람이 있고, 그들의 이름이 써진 명찰 n개가 있다. 명찰을 랜덤하게 나눠줬을 때, 단 한 사람도 자기 명찰을 받지 않는 경우의 수 \(D_n\)
  • 목욕탕에 n명의 사람이 있다. 몇 사람씩 그룹을 만들어 동그랗게 서서, 서로 등을 밀어주는 경우의 수 \(D_n\)은 얼마인가? 혼자서 자기 등을 밀 수는 없다.
  • 이 수열 \(D_n\)에는 (arrangement의 반대 개념으로) derangement 라는 이름이 붙어 있음
    \(D_0=1,D_1=0,D_2=1,D_3=2,D_4=9,D_5=44,D_6=265,\cdots\)
  • 일반항
    \(D_n = n! \sum_{k=0}^{n}\frac{(-1)^k}{k!}\)
   

\(D_4\)의 경우

예를 들어 1,2,3,4 네 사람이 있는 경우를 생각해 보자. 말을 줄이기 위해, 기호를 하나 정의한다. (abc…d) 라는 것은 a는 b의 등을 밀고, b는 c의 등을 밀고, … , d는 a의 등을 미는 것을 뜻한다. 1,2,3,4 네 명이서 서로 등을 밀어 주는 경우의 수는 다음과 같이 셀 수 있다.

(1234), (1243), (1324), (1342), (1423), (1432), (12)(34), (13)(24), (14)(23)

따라서 모두 9가지 경우가 있다. 즉 \(D_4=9\)

 

 

점화식

  • \(D_n=(n-1)(D_{n-1}+D_{n-2})\)
  • \(D_n-nD_{n-1}=-(D_{n-1}-(n-1)D_{n-2})\)
  • \(D_n-nD_{n-1}=(-1)^n\)

 

 

생성함수

  • 지수생성함수는 다음과 같다
    \(f(x)=\sum_{n=0}^{\infty}\frac{D_n}{n!}x^n=\frac{e^{-x}}{1-x}\)

(증명)

위에서 얻은 점화식을 사용하면,

\(\sum_{n=0}^{\infty}\frac{D_n-nD_{n-1}}{n!}x^n=\sum_{n=0}^{\infty}\frac{(-1)^n}{n!}x^n=e^{-x}\)

좌변을 정리하면,

\(\sum_{n=0}^{\infty}\frac{D_n}{n!}x^n-\sum_{n=0}^{\infty}\frac{nD_{n-1}}{n!}x^n=f(x)-\sum_{n=1}^{\infty}\frac{D_{n-1}}{(n-1)!}x^n=f(x)-xf(x)\)

따라서,

\(f(x)=\frac{e^{-x}}{1-x}=(1+x+x^2+x^3+\cdots)(1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+\cdots)\) ■

 

 

수열의 일반항

  • 위에서 얻은 생성함수로부터 수열의 일반항을 구할 수 있다
    \(\frac{D_n}{n!}=1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^n\frac{1}{n!}\)
    \(D_n = n! \sum_{k=0}^{n}\frac{(-1)^k}{k!}\)

 

 

 

포함과 배제의 원리의 응용

  • 집합 \(\{1,2,\cdots,n\}\)의 permutation 들의 집합을 A, i->i 인 permutation 들의 집합을 \(A_i\) 이라 하자

 

 

자연상수와의 관계

 

 

이 식으로부터 다음과 같은 결론을 얻을 수 있다.

 

(n이 충분히 클 때) n명의 사람이 있고, 그들의 이름이 써진 명찰 n개가 있다. 명찰을 랜덤하게 나눠줬을 때, 단 한 사람도 자기 명찰을 받지 않을 확률은 \(\frac{1}{e}\)에 가깝다.

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역==    

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그