"초기하 미분방정식(Hypergeometric differential equations)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
2번째 줄: | 2번째 줄: | ||
* <math>0,1,\infty</math> 세 점에서 regular sinugular point를 가지는 2계 선형 미분방정식<br> | * <math>0,1,\infty</math> 세 점에서 regular sinugular point를 가지는 2계 선형 미분방정식<br> | ||
+ | * 리만ㄱ<br> | ||
* 다음과 같은 미분방정식을 말함<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br> | * 다음과 같은 미분방정식을 말함<br><math>z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0</math><br> | ||
* 19세기에 활발하게 연구<br> | * 19세기에 활발하게 연구<br> | ||
− | * Fuchsian | + | * Fuchsian 미분방정식의 간단하고 중요한 예로 이론의 모델을 제공<br> |
14번째 줄: | 15번째 줄: | ||
<math>\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1</math> | <math>\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1</math> | ||
− | 여기서 <math>(a)_n=a(a+1)(a+2)...(a+n-1)</math> | + | 여기서 <math>(a)_n=a(a+1)(a+2)...(a+n-1)</math>는 [[Pochhammer 기호와 캐츠(Kac) 기호]] |
2010년 1월 7일 (목) 02:29 판
개요
- \(0,1,\infty\) 세 점에서 regular sinugular point를 가지는 2계 선형 미분방정식
- 리만ㄱ
- 다음과 같은 미분방정식을 말함
\(z(1-z)\frac{d^2w}{dz^2}+(c-(a+b+1)z)\frac{dw}{dz}-abw = 0\) - 19세기에 활발하게 연구
- Fuchsian 미분방정식의 간단하고 중요한 예로 이론의 모델을 제공
급수해
\(\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1\)
여기서 \((a)_n=a(a+1)(a+2)...(a+n-1)\)는 Pochhammer 기호와 캐츠(Kac) 기호
재미있는 사실
역사
관련된 다른 주제들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/hypergeometric_differential_equation
- http://en.wikipedia.org/wiki/Frobenius_solution_to_the_hypergeometric_equation
- http://www.wolframalpha.com/input/?i=
관련논문
- On the Kummer Solutions of the Hypergeometric Equation
- Reese T. Prosser, The American Mathematical Monthly, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543
관련도서 및 추천도서
- Conformal Mapping
- Zeev Nehari, Dover Publications, 1982-1
- Schwarz_functions_and_hypergeometric_differential_equation.pdf
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)