"측지선"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
7번째 줄: 7번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
  
Mcoordinate chart 에서 <math>\alpha(t)=(\alpha_1(t),\alpha_2(t))</math> 로 표현되는 곡선이 측지선이 될 조건은 크리스토펠 기호를 사용하여 다음 미분방정식으로 쓸 수 있다<br><math>\frac{d^2\alpha_k }{dt^2} + \Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0</math><br> 또는<br><math>\ddot{\alpha_k } + \Gamma^{k}_{~i j }\dot{\alpha_i}\dot{\alpha_j }= 0</math><br>
+
다양체 M의 coordinate chart 에서 <math>\alpha(t)=(\alpha_1(t),\alpha_2(t),\cdots)</math> 로 표현되는 곡선이 측지선이 될 조건은 크리스토펠 기호를 사용하여 다음 미분방정식으로 쓸 수 있다<br><math>\frac{d^2\alpha_k }{dt^2} + \Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0</math><br> 또는<br><math>\ddot{\alpha_k } + \Gamma^{k}_{~i j }\dot{\alpha_i}\dot{\alpha_j }= 0</math><br>
  
 
 
 
 
39번째 줄: 39번째 줄:
  
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
 +
 +
* [http://www.math.sunysb.edu/%7Ebrweber/401s09/coursefiles/Lecture23.pdf ][http://www.math.sunysb.edu/%7Ebrweber/401s09/coursefiles/Lecture23.pdf http://www.math.sunysb.edu/~brweber/401s09/coursefiles/Lecture23.pdf]
  
 
 
 
 

2011년 4월 15일 (금) 05:49 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 다양체 M의 coordinate chart 에서 \(\alpha(t)=(\alpha_1(t),\alpha_2(t),\cdots)\) 로 표현되는 곡선이 측지선이 될 조건은 크리스토펠 기호를 사용하여 다음 미분방정식으로 쓸 수 있다
    \(\frac{d^2\alpha_k }{dt^2} + \Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0\)
    또는
    \(\ddot{\alpha_k } + \Gamma^{k}_{~i j }\dot{\alpha_i}\dot{\alpha_j }= 0\)

 

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그