"타원곡선"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
38번째 줄: 38번째 줄:
  
 
*  the only possible torsion groups for elliptic curves over Q are the cyclic groups of order 1,2,3,4,5,6,7,8,9,10,12 [sic -- 11 is not possible] and<br><math>\frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{n\mathbb Z}</math> for n=1,2,3,4<br>
 
*  the only possible torsion groups for elliptic curves over Q are the cyclic groups of order 1,2,3,4,5,6,7,8,9,10,12 [sic -- 11 is not possible] and<br><math>\frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{n\mathbb Z}</math> for n=1,2,3,4<br>
* <math>y^2=x^3-n^2x</math>
+
* 예) <math>E_n : y^2=x^3-n^2x</math>의 torsion은 <math>\{(\infty,\infty), (0,0),(n,0),(-n,0)\}</math>임
  
 
 
 
 
112번째 줄: 112번째 줄:
  
 
* [http://ko.wikipedia.org/wiki/%ED%83%80%EC%9B%90%EA%B3%A1%EC%84%A0 http://ko.wikipedia.org/wiki/타원곡선]
 
* [http://ko.wikipedia.org/wiki/%ED%83%80%EC%9B%90%EA%B3%A1%EC%84%A0 http://ko.wikipedia.org/wiki/타원곡선]
* http://en.wikipedia.org/wiki/elliptic_curve
+
* [http://en.wikipedia.org/wiki/elliptic_curve ]http://en.wikipedia.org/wiki/elliptic_curve
 +
* http://en.wikipedia.org/wiki/Mordell-Weil_theorem
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* [http://www.wolframalpha.com/input/?i=y%5E2=x%5E3-x http://www.wolframalpha.com/input/?i=y^2=x^3-x]
 
* [http://www.wolframalpha.com/input/?i=y%5E2=x%5E3-x http://www.wolframalpha.com/input/?i=y^2=x^3-x]
151번째 줄: 152번째 줄:
 
**  Silverman, Joseph H. (1986), Graduate Texts in Mathematics, 106, Springer-Verlag<br>
 
**  Silverman, Joseph H. (1986), Graduate Texts in Mathematics, 106, Springer-Verlag<br>
 
*  도서내검색<br>
 
*  도서내검색<br>
** http://books.google.com/books?q=
+
** [http://books.google.com/books?q=%ED%83%80%EC%9B%90%EA%B3%A1%EC%84%A0 http://books.google.com/books?q=타원곡선]
 
** [http://book.daum.net/search/contentSearch.do?query=%ED%83%80%EC%9B%90%EA%B3%A1%EC%84%A0 http://book.daum.net/search/contentSearch.do?query=타원곡선]
 
** [http://book.daum.net/search/contentSearch.do?query=%ED%83%80%EC%9B%90%EA%B3%A1%EC%84%A0 http://book.daum.net/search/contentSearch.do?query=타원곡선]
 
** http://book.daum.net/search/contentSearch.do?query=
 
** http://book.daum.net/search/contentSearch.do?query=

2009년 10월 14일 (수) 22:43 판

간단한 소개

 

 

 

 

격자와 타원곡선

\(y^2=4x^3-g_2(\tau)x-g_3\)

\(g_2(\tau) = 60G_4=60\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{4}}\)

\(g_3(\tau) = 140G_6=140\sum_{ (m,n) \neq (0,0)} \frac{1}{(m+n\tau )^{6}}\)

 

 

군의 구조
  • chord-tangent method
  • 유리수해에 대한 Mordell-Weil theorem
     

 

 

rank와 torsion
  • the only possible torsion groups for elliptic curves over Q are the cyclic groups of order 1,2,3,4,5,6,7,8,9,10,12 [sic -- 11 is not possible] and
    \(\frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{n\mathbb Z}\) for n=1,2,3,4
  • 예) \(E_n : y^2=x^3-n^2x\)의 torsion은 \(\{(\infty,\infty), (0,0),(n,0),(-n,0)\}\)임

 

 

  • \(y^2=x^3-x\)
    [/pages/2061314/attachments/2299029 MSP1975197gdf732cih44i50000361d01gd578fhc4a.gif]
  • 유리수해
    \(E(\mathbb Q)=\{(\infty,\infty), (0,0),(1,0),(-1,0)\} \simeq \frac{\mathbb Z}{2\mathbb Z}\oplus \frac{\mathbb Z}{2\mathbb Z}\)
  • 주기
    \(2\omega=4\int_0^1\frac{dx}{\sqrt{1-x^4}}=B(1/2,1/4)=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots\)

 

 

 

L-함수

 

타니야마-시무라 추측(정리)

 

 

Birch and Swinnerton-Dyer conjecture

 

재미있는 사실

 

 

역사

 

 

관련된 다른 주제들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그