"페르마 소수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 페르마 소수로 바꾸었습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="line-height: 3.42em; margin | + | <h5 style="line-height: 3.42em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.16em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> |
* [[페르마 소수|페르마소수]] | * [[페르마 소수|페르마소수]] | ||
7번째 줄: | 7번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">개요</h5> |
* 페르마소수란 <math>F_n= 2^{2^n}+1</math> 형태의 소수<br> | * 페르마소수란 <math>F_n= 2^{2^n}+1</math> 형태의 소수<br> | ||
23번째 줄: | 23번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
52번째 줄: | 31번째 줄: | ||
* [[수학사연표 (역사)|수학사연표]]<br> <br> | * [[수학사연표 (역사)|수학사연표]]<br> <br> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <h5>관련된 | + | <h5>관련된 항목들</h5> |
* [[정다각형의 작도]] | * [[정다각형의 작도]] | ||
* [[메르센 소수]] | * [[메르센 소수]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2012년 8월 26일 (일) 05:11 판
이 항목의 스프링노트 원문주소
개요
- 페르마소수란 \(F_n= 2^{2^n}+1\) 형태의 소수
- 3,5,17,257, 65537 다섯 가지만 알려져 있음.
- 페르마는 \(F_n= 2^{2^n}+1\) 가 모두 소수일 것이라 추측하였으나, 후에 오일러는 반례를 발견
\(F_5=641 \times 6700417\)
정다각형의 작도
- 정n각형이 자와 컴파스로 작도가능 \(\iff\) \(n=2^k p_1 p_2 \cdots p_r\) (k ,r은 0이상의 정수, \(p_1, p_2, \cdots, p_r\) 은 서로 다른 페르마소수)
- 정다각형의 작도와 가우스와 정17각형의 작도 항목을 참조
역사