"포함과 배제의 원리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
* <math>|A\cup B| = |A| + |B| - |A \cap B|</math>
 
* <math>|A\cup B| = |A| + |B| - |A \cap B|</math>
 
* <math>|A\cup B \cup C| = |A| + |B| + |C| - |A\cap B| - |B\cap C| - |C\cap A| + |A\cap B\cap C|</math>
 
* <math>|A\cup B \cup C| = |A| + |B| + |C| - |A\cap B| - |B\cap C| - |C\cap A| + |A\cap B\cap C|</math>
*  일반적으로 다음이 성립한다<br><math>\biggl|\bigcup_{i=1}^n A_i\biggr| & {} =\sum_{i=1}^n\left|A_i\right|-\sum_{i,j\,:\,1 \le i < j \le n}\left|A_i\cap A_j\right| +\sum_{i,j,k\,:\,1 \le i < j < k \le n}\left|A_i\cap A_j\cap A_k\right|-\ \cdots\ + \left(-1\right)^{n-1} \left|A_1\cap\cdots\cap A_n\right|</math><br>
+
*  일반적으로 다음이 성립한다<br>  <br><math>\biggl|\bigcup_{i=1}^n A_i\biggr| & {} =\sum_{i=1}^n\left|A_i\right|-\sum_{i,j\,:\,1 \le i < j \le n}\left|A_i\cap A_j\right| +\sum_{i,j,k\,:\,1 \le i < j < k \le n}\left|A_i\cap A_j\cap A_k\right|-\ \cdots\ + \left(-1\right)^{n-1} \left|A_1\cap\cdots\cap A_n\right|</math><br>
  
 
 
 
 
  
 
+
(증명)
 
 
자연수 n에 대하여,
 
 
 
<math>\sum _{k=1}^n (-1)^{k-1} \binom{n}{k}=1</math> 이 성립한다.
 
  
 
+
<math>a\in \bigcup_{i=1}^n A_i</math> 가 <math>A_i</math> 들 중 k 개의 집합에 속해 있으면, a 는 우변을 통하여 <math>\sum _{l=1}^k (-1)^{l-1} \binom{k}{l}=1</math> 번 세어지게 된다. ■
  
 
 
 
 
47번째 줄: 43번째 줄:
  
 
<h5>관련된 항목들</h5>
 
<h5>관련된 항목들</h5>
 +
 +
* [[뫼비우스 반전공식]]
 +
 +
 
  
 
 
 
 

2012년 1월 2일 (월) 17:49 판

이 항목의 수학노트 원문주소

 

 

개요
  • \(|A\cup B| = |A| + |B| - |A \cap B|\)
  • \(|A\cup B \cup C| = |A| + |B| + |C| - |A\cap B| - |B\cap C| - |C\cap A| + |A\cap B\cap C|\)
  • 일반적으로 다음이 성립한다
     
    \(\biggl|\bigcup_{i=1}^n A_i\biggr| & {} =\sum_{i=1}^n\left|A_i\right|-\sum_{i,j\,:\,1 \le i < j \le n}\left|A_i\cap A_j\right| +\sum_{i,j,k\,:\,1 \le i < j < k \le n}\left|A_i\cap A_j\cap A_k\right|-\ \cdots\ + \left(-1\right)^{n-1} \left|A_1\cap\cdots\cap A_n\right|\)

 

(증명)

\(a\in \bigcup_{i=1}^n A_i\) 가 \(A_i\) 들 중 k 개의 집합에 속해 있으면, a 는 우변을 통하여 \(\sum _{l=1}^k (-1)^{l-1} \binom{k}{l}=1\) 번 세어지게 된다. ■

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서