"프로베니우스와 체보타레프 밀도(density) 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 프로베니우스와 체보타레프의 density 정리로 바꾸었습니다.)
(차이 없음)

2009년 6월 29일 (월) 21:11 판

간단한 소개
  • prime ideal의 분해와  아틴 심볼을 통한 cycle 구조와의 관계
  • 갈루아 체확장 L/K,

 

 

아틴 심볼의 정의

 

정리

 

 

 

 

디리클레 정리의 유도

\(\zeta_n\)을 primitive n-th 단위근이라 하자.

\(\mathbb Q \subset \mathbb Q(\zeta_n)\) , \(\wp\) 는 unramified prime ideal over p 를 가정한다.

이제 소수 p에 대한 아틴 심볼은  \(\sigma_p(\alpha)=\alpha ^p \pmod \wp\) 로 정의된다.

체보타레프 정리에 의해 p의 분해는 아틴 심볼의 cycle 구조를 통해서 알 수 있다.

한편 \(\sigma_p(\zeta)=\zeta ^p=\zeta^{an+b}=\zeta^b\) 이므로, 아틴심볼은 p를 n으로 나눈 나머지에 의존한다.

따라서 의해 디리클레 정리가 증명된다.

 

 

관련된 학부 과목과 미리 알고 있으면 좋은 것들

 

 

관련된 대학원 과목

 

 

관련된 다른 주제들

 

표준적인 도서 및 추천도서

 

위키링크

 

참고할만한 자료