"학부생을 위한 읽기 목록"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
|||
3번째 줄: | 3번째 줄: | ||
* [[저자별]] | * [[저자별]] | ||
− | + | ||
− | + | ||
− | + | ==수학자와 수학사== | |
* [http://www.amazon.com/Mathematics-Touchstone-Book-E-T-Bell/dp/0671628186 Men of mathematics]<br> | * [http://www.amazon.com/Mathematics-Touchstone-Book-E-T-Bell/dp/0671628186 Men of mathematics]<br> | ||
** E.T.Bell, 1986 | ** E.T.Bell, 1986 | ||
* [http://books.google.com/books?id=NM36hgqmOLkC&hl=ko Development of mathematics in the 19th century]<br> | * [http://books.google.com/books?id=NM36hgqmOLkC&hl=ko Development of mathematics in the 19th century]<br> | ||
− | ** Felix Klein, | + | ** Felix Klein, Math Sci Press, 1979 |
− | + | ||
− | + | ||
− | + | ==대수학== | |
* Israel Kleiner, [http://www.amazon.com/exec/obidos/ASIN/0817646841/ebooksclub-20/ A History of Abstract Algebra] | * Israel Kleiner, [http://www.amazon.com/exec/obidos/ASIN/0817646841/ebooksclub-20/ A History of Abstract Algebra] | ||
− | + | ||
− | + | ||
− | + | ==군론과 기하학== | |
* [http://www.amazon.com/Symmetries-Things-John-Horton-Conway/dp/1568812205 The Symmetries of Things]<br> | * [http://www.amazon.com/Symmetries-Things-John-Horton-Conway/dp/1568812205 The Symmetries of Things]<br> | ||
** John Horton Conway, Heidi Burgiel, Chaim Goodman-Strauss | ** John Horton Conway, Heidi Burgiel, Chaim Goodman-Strauss | ||
* [http://www.amazon.com/Indras-Pearls-Vision-Felix-Klein/dp/0521352533 Indra's Pearls: The Vision of Felix Klein.]<br> | * [http://www.amazon.com/Indras-Pearls-Vision-Felix-Klein/dp/0521352533 Indra's Pearls: The Vision of Felix Klein.]<br> | ||
− | ** Mumford, David; Series, Caroline; Wright, David, | + | ** Mumford, David; Series, Caroline; Wright, David, Cambridge. (2002) |
− | + | ||
− | + | ||
− | + | ==정수론== | |
* [http://www.jstor.org/stable/2317083 What is a Reciprocity Law?]<br> | * [http://www.jstor.org/stable/2317083 What is a Reciprocity Law?]<br> | ||
− | ** B. F. Wyman, | + | ** B. F. Wyman, <cite>The American Mathematical Monthly</cite>, Vol. 79, No. 6 (Jun. - Jul., 1972), pp. 571-586 |
* [http://www.jstor.org/stable/2324924 Number Theory as Gadfly]<br> | * [http://www.jstor.org/stable/2324924 Number Theory as Gadfly]<br> | ||
− | ** B. Mazur, | + | ** B. Mazur, <cite>The American Mathematical Monthly</cite>, Vol. 98, No. 7 (Aug. - Sep., 1991), pp. 593-610 |
− | + | ||
− | + | ||
− | + | ==해석학== | |
* [http://www.amazon.com/Analysis-History-Undergraduate-Mathematics-Readings/dp/0387945512 Analysis by Its History]<br> | * [http://www.amazon.com/Analysis-History-Undergraduate-Mathematics-Readings/dp/0387945512 Analysis by Its History]<br> | ||
− | ** Ernst Hairer | + | ** Ernst Hairer and Gerhard Wanner, 2008 |
* [http://www.amazon.com/Excursions-Classical-Analysis-Classroom-Materials/dp/0883857685 Excursions in Classical Analysis] | * [http://www.amazon.com/Excursions-Classical-Analysis-Classroom-Materials/dp/0883857685 Excursions in Classical Analysis] | ||
− | + | ||
− | + | ||
− | + | ==기하학== | |
* [http://www.jstor.org/stable/2316199 What is a Sheaf?]<br> | * [http://www.jstor.org/stable/2316199 What is a Sheaf?]<br> | ||
− | ** J. Arthur Seebach, Jr., Linda A. Seebach and Lynn A. Steen, | + | ** J. Arthur Seebach, Jr., Linda A. Seebach and Lynn A. Steen, <cite>The American Mathematical Monthly</cite>, Vol. 77, No. 7 (Aug. - Sep., 1970), pp. 681-703 |
* Shing-Shen Chern, [http://www.jstor.org/stable/2321093 From Triangles to Manifolds], <cite>The American Mathematical Monthly</cite>, Vol. 86, No. 5 (May, 1979), pp. 339-349 | * Shing-Shen Chern, [http://www.jstor.org/stable/2321093 From Triangles to Manifolds], <cite>The American Mathematical Monthly</cite>, Vol. 86, No. 5 (May, 1979), pp. 339-349 | ||
* [http://www.jstor.org/stable/2324574 What Is Geometry?]<br> | * [http://www.jstor.org/stable/2324574 What Is Geometry?]<br> | ||
− | ** Shiing-Shen Chern, | + | ** Shiing-Shen Chern, <cite>The American Mathematical Monthly</cite>, Vol. 97, No. 8, Special Geometry Issue (Oct., 1990), pp. 679-686 |
* [http://www.jstor.org/stable/3616542 What Is Geometry? The 1982 Presidential Address]<br> | * [http://www.jstor.org/stable/3616542 What Is Geometry? The 1982 Presidential Address]<br> | ||
− | ** Michael Atiyah, | + | ** Michael Atiyah, <cite>The Mathematical Gazette</cite>, Vol. 66, No. 437 (Oct., 1982), pp. 179-184 |
* [http://www.jstor.org/stable/3027068 The Universal Domination of Geometry]<br> | * [http://www.jstor.org/stable/3027068 The Universal Domination of Geometry]<br> | ||
− | ** J. Dieudonne, | + | ** J. Dieudonne, <cite>The Two-Year College Mathematics Journal</cite>, Vol. 12, No. 4 (Sep., 1981), pp. 227-231 |
− | + | ||
− | + | ||
− | + | ==논문과 에세이== | |
* [http://www.jstor.org/stable/2589372 Mathematics at the Turn of the Millennium]<br> | * [http://www.jstor.org/stable/2589372 Mathematics at the Turn of the Millennium]<br> | ||
** Phillip A. Griffiths, The American Mathematical Monthly, Vol. 107, No. 1 (Jan., 2000), pp. 1-14 | ** Phillip A. Griffiths, The American Mathematical Monthly, Vol. 107, No. 1 (Jan., 2000), pp. 1-14 | ||
− | * [http://www.mff.cuni.cz/veda/konference/wds/contents/pdf07/ | + | * [http://www.mff.cuni.cz/veda/konference/wds/contents/pdf07/WDS07_142_m8 _Trkovska.pdf Felix Klein and his Erlanger Programm]<br> |
− | ** D. | + | ** D. Trkovsk\.b4a |
− | * [http://www.springerlink.com/content/y2k73j24m8290570/ Klein, Lie, and the | + | * [http://www.springerlink.com/content/y2k73j24m8290570/ Klein, Lie, and the \[OpenCurlyDoubleQuote]Erlanger programm\[CloseCurlyDoubleQuote]]<br> |
− | ** | + | ** David E. Rowe<br> |
* [http://www.jstor.org/stable/2975040 Part I. Topology and Abstract Algebra as Two Roads of Mathematical Comprehension]<br> | * [http://www.jstor.org/stable/2975040 Part I. Topology and Abstract Algebra as Two Roads of Mathematical Comprehension]<br> | ||
− | ** Hermann Weyl, | + | ** Hermann Weyl, <cite>The American Mathematical Monthly</cite>, Vol. 102, No. 5 (May, 1995), pp. 453-460 |
* [http://www.jstor.org/stable/2974564 Part II. Topology and Abstract Algebra as Two Roads of Mathematical Comprehension]<br> | * [http://www.jstor.org/stable/2974564 Part II. Topology and Abstract Algebra as Two Roads of Mathematical Comprehension]<br> | ||
** Hermann Weyl, <cite>The American Mathematical Monthly</cite>, Vol. 102, No. 7 (Aug. - Sep., 1995), pp. 646-651 | ** Hermann Weyl, <cite>The American Mathematical Monthly</cite>, Vol. 102, No. 7 (Aug. - Sep., 1995), pp. 646-651 | ||
93번째 줄: | 93번째 줄: | ||
** Andre Weil, <cite>The American Mathematical Monthly</cite>, Vol. 57, No. 5 (May, 1950), pp. 295-306 | ** Andre Weil, <cite>The American Mathematical Monthly</cite>, Vol. 57, No. 5 (May, 1950), pp. 295-306 | ||
* [http://www.jstor.org/stable/2323277 Very Basic Lie Theory]<br> | * [http://www.jstor.org/stable/2323277 Very Basic Lie Theory]<br> | ||
− | ** Roger Howe, | + | ** Roger Howe, <cite>The American Mathematical Monthly</cite>, Vol. 90, No. 9 (Nov., 1983), pp. 600-623 |
* [http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.bams/1183533964&page=record Missed opportunities]<br> | * [http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.bams/1183533964&page=record Missed opportunities]<br> | ||
− | ** Freeman J. Dyson, | + | ** Freeman J. Dyson, Bull. Amer. Math. Soc. Volume 78, Number 5 (1972), 635-652. |
* [http://www.jstor.org/stable/3482035 Geometry between the Devil and the Deep Sea]<br> | * [http://www.jstor.org/stable/3482035 Geometry between the Devil and the Deep Sea]<br> | ||
− | ** Hans | + | ** Hans Freudenthal |
** <cite>Educational Studies in Mathematics</cite>, Vol. 3, No. 3/4, Lectures of the Comprehensive School Mathematics Project (CSMP). Conference on the Teaching of Geometry (Jun., 1971), pp. 413-435 | ** <cite>Educational Studies in Mathematics</cite>, Vol. 3, No. 3/4, Lectures of the Comprehensive School Mathematics Project (CSMP). Conference on the Teaching of Geometry (Jun., 1971), pp. 413-435 | ||
* [http://www.jstor.org/stable/2318338 Historical Ramblings in Algebraic Geometry and Related Algebra]<br> | * [http://www.jstor.org/stable/2318338 Historical Ramblings in Algebraic Geometry and Related Algebra]<br> | ||
112번째 줄: | 112번째 줄: | ||
** <cite>The American Mathematical Monthly</cite>, Vol. 101, No. 10 (Dec., 1994), pp. 963-974 | ** <cite>The American Mathematical Monthly</cite>, Vol. 101, No. 10 (Dec., 1994), pp. 963-974 | ||
− | * Directed Reading Program in | + | * Directed Reading Program in Mathematics (Rutgers)<br> |
** 프로그램 안내 : http://www.math.rutgers.edu/undergrad/Activities/drp/index.html<br> | ** 프로그램 안내 : http://www.math.rutgers.edu/undergrad/Activities/drp/index.html<br> | ||
** 샘플 프로젝트 목록 : http://www.math.rutgers.edu/undergrad/Activities/drp/samples.html | ** 샘플 프로젝트 목록 : http://www.math.rutgers.edu/undergrad/Activities/drp/samples.html | ||
− | + | ||
− | + | ||
− | * [http://www.ams.org/cgi-bin/bookstore/bookpromo/stmlseries | + | * [http://www.ams.org/cgi-bin/bookstore/bookpromo/stmlseries AMS Student Mathematical Library] |
* [http://mathdl.maa.org/mathDL/22/ MAA Writing Awards] | * [http://mathdl.maa.org/mathDL/22/ MAA Writing Awards] | ||
129번째 줄: | 129번째 줄: | ||
* [http://www.math.snu.ac.kr/%7Ehongjong/recommendation.html 김홍종 교수 추천도서] | * [http://www.math.snu.ac.kr/%7Ehongjong/recommendation.html 김홍종 교수 추천도서] | ||
− | + | ||
− | + | ||
− | + | ==관련논문== | |
* http://www.jstor.org/action/doBasicSearch?Query=griffiths | * http://www.jstor.org/action/doBasicSearch?Query=griffiths | ||
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
− | + | ||
− | + | ||
− | + | ==관련도서== | |
− | * A Student's Guide to the Study, Practice, and Tools of Modern | + | * A Student's Guide to the Study, Practice, and Tools of Modern Mathematics |
+ | ** http://www.scribd.com/doc/70693985/A-Student-Guide-to-the-Study-Practice-And-Tools-of-Modern-Mathematics<br> |
2012년 9월 13일 (목) 14:18 판
- 수학과 신입생을 위한 읽기 목록
- 과목별 읽기 목록
- 저자별
수학자와 수학사
- Men of mathematics
- E.T.Bell, 1986
- Development of mathematics in the 19th century
- Felix Klein, Math Sci Press, 1979
대수학
- Israel Kleiner, A History of Abstract Algebra
군론과 기하학
- The Symmetries of Things
- John Horton Conway, Heidi Burgiel, Chaim Goodman-Strauss
- Indra's Pearls: The Vision of Felix Klein.
- Mumford, David; Series, Caroline; Wright, David, Cambridge. (2002)
정수론
- What is a Reciprocity Law?
- B. F. Wyman, The American Mathematical Monthly, Vol. 79, No. 6 (Jun. - Jul., 1972), pp. 571-586
- Number Theory as Gadfly
- B. Mazur, The American Mathematical Monthly, Vol. 98, No. 7 (Aug. - Sep., 1991), pp. 593-610
해석학
- Analysis by Its History
- Ernst Hairer and Gerhard Wanner, 2008
- Excursions in Classical Analysis
기하학
- What is a Sheaf?
- J. Arthur Seebach, Jr., Linda A. Seebach and Lynn A. Steen, The American Mathematical Monthly, Vol. 77, No. 7 (Aug. - Sep., 1970), pp. 681-703
- Shing-Shen Chern, From Triangles to Manifolds, The American Mathematical Monthly, Vol. 86, No. 5 (May, 1979), pp. 339-349
- What Is Geometry?
- Shiing-Shen Chern, The American Mathematical Monthly, Vol. 97, No. 8, Special Geometry Issue (Oct., 1990), pp. 679-686
- What Is Geometry? The 1982 Presidential Address
- Michael Atiyah, The Mathematical Gazette, Vol. 66, No. 437 (Oct., 1982), pp. 179-184
- The Universal Domination of Geometry
- J. Dieudonne, The Two-Year College Mathematics Journal, Vol. 12, No. 4 (Sep., 1981), pp. 227-231
논문과 에세이
- Mathematics at the Turn of the Millennium
- Phillip A. Griffiths, The American Mathematical Monthly, Vol. 107, No. 1 (Jan., 2000), pp. 1-14
- _Trkovska.pdf Felix Klein and his Erlanger Programm
- D. Trkovsk\.b4a
- Klein, Lie, and the \[OpenCurlyDoubleQuoteErlanger programm\[CloseCurlyDoubleQuote]]
- David E. Rowe
- David E. Rowe
- Part I. Topology and Abstract Algebra as Two Roads of Mathematical Comprehension
- Hermann Weyl, The American Mathematical Monthly, Vol. 102, No. 5 (May, 1995), pp. 453-460
- Part II. Topology and Abstract Algebra as Two Roads of Mathematical Comprehension
- Hermann Weyl, The American Mathematical Monthly, Vol. 102, No. 7 (Aug. - Sep., 1995), pp. 646-651
- Mathematics in the 20th Century
- Michael Atiyah, The American Mathematical Monthly, Vol. 108, No. 7 (Aug. - Sep., 2001), pp. 654-666
- A Half-Century of Mathematics
- Hermann Weyl, The American Mathematical Monthly, Vol. 58, No. 8 (Oct., 1951), pp. 523-553
- The Future of Mathematics
- Andre Weil, The American Mathematical Monthly, Vol. 57, No. 5 (May, 1950), pp. 295-306
- Very Basic Lie Theory
- Roger Howe, The American Mathematical Monthly, Vol. 90, No. 9 (Nov., 1983), pp. 600-623
- Missed opportunities
- Freeman J. Dyson, Bull. Amer. Math. Soc. Volume 78, Number 5 (1972), 635-652.
- Geometry between the Devil and the Deep Sea
- Hans Freudenthal
- Educational Studies in Mathematics, Vol. 3, No. 3/4, Lectures of the Comprehensive School Mathematics Project (CSMP). Conference on the Teaching of Geometry (Jun., 1971), pp. 413-435
- Historical Ramblings in Algebraic Geometry and Related Algebra
- Shreeram S. Abhyankar
- The American Mathematical Monthly, Vol. 83, No. 6 (Jun. - Jul., 1976), pp. 409-448
- Mathematical Building Blocks
- I. Kleiner and A. Shenitzer
- Mathematics Magazine, Vol. 66, No. 1 (Feb., 1993), pp. 3-13
- Exceptional Objects
- John Stillwell
- The American Mathematical Monthly, Vol. 105, No. 9 (Nov., 1998), pp. 850-858
- The Role of Paradoxes in the Evolution of Mathematics
- I. Kleiner and N. Movshovitz-Hadar
- The American Mathematical Monthly, Vol. 101, No. 10 (Dec., 1994), pp. 963-974
- Directed Reading Program in Mathematics (Rutgers)
- MAA Writing Awards
- A Required Reading Program for Mathematics Majors.
- Brabenec, Robert L. , The American Mathematical Monthly. 94(4) (1987): 366-368
- Brabenec, Robert L. , The American Mathematical Monthly. 94(4) (1987): 366-368
- Another Required Reading Program for Mathematics Majors
- James C. Reber, The American Mathematical Monthly, Vol. 95, No. 9 (Nov., 1988), pp. 867-868
- James C. Reber, The American Mathematical Monthly, Vol. 95, No. 9 (Nov., 1988), pp. 867-868
- 김홍종 교수 추천도서
관련논문
- http://www.jstor.org/action/doBasicSearch?Query=griffiths
- http://www.jstor.org/action/doBasicSearch?Query=
관련도서
- A Student's Guide to the Study, Practice, and Tools of Modern Mathematics