"행렬식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) (→정의) |
||
18번째 줄: | 18번째 줄: | ||
* <em style="">n</em> x <em style="">n</em> 행렬 <math>A=(a_{ij})</math>에 대하여, 다음과 같이 행렬식을 정의<br><math>\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i \sigma(i)}</math><br> 여기서 <math>S_n</math>은 [[대칭군 (symmetric group)]]<br> | * <em style="">n</em> x <em style="">n</em> 행렬 <math>A=(a_{ij})</math>에 대하여, 다음과 같이 행렬식을 정의<br><math>\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i \sigma(i)}</math><br> 여기서 <math>S_n</math>은 [[대칭군 (symmetric group)]]<br> | ||
− | + | * $n=1$ 일 때, $\left( | |
− | * n=2 | + | \begin{array}{c} |
+ | a_{1,1} | ||
+ | \end{array} | ||
+ | \right) | ||
+ | $ 의 행렬식은 $a_{1,1}$ | ||
+ | * $n=2$일 때, | ||
+ | $ | ||
+ | \left( | ||
+ | \begin{array}{cc} | ||
+ | a_{1,1} & a_{1,2} \\ | ||
+ | a_{2,1} & a_{2,2} | ||
+ | \end{array} | ||
+ | \right) | ||
+ | $ 의 행렬식은 <math>a_{1,1} a_{2,2}-a_{1,2} a_{2,1}</math> | ||
* n=3<br><math>a_{1,1} a_{2,2} a_{3,3}-a_{1,1} a_{2,3} a_{3,2},-a_{1,2} a_{2,1} a_{3,3}+a_{1,2} a_{2,3} a_{3,1}+a_{1,3} a_{2,1} a_{3,2}-a_{1,3} a_{2,2} a_{3,1}</math><br> | * n=3<br><math>a_{1,1} a_{2,2} a_{3,3}-a_{1,1} a_{2,3} a_{3,2},-a_{1,2} a_{2,1} a_{3,3}+a_{1,2} a_{2,3} a_{3,1}+a_{1,3} a_{2,1} a_{3,2}-a_{1,3} a_{2,2} a_{3,1}</math><br> | ||
2012년 12월 13일 (목) 06:10 판
이 항목의 스프링노트 원문주소
개요
- 교대 겹선형 k-형식(k-alternating form)
정의
- n x n 행렬 \(A=(a_{ij})\)에 대하여, 다음과 같이 행렬식을 정의
\(\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i \sigma(i)}\)
여기서 \(S_n\)은 대칭군 (symmetric group) - $n=1$ 일 때, $\left(
\begin{array}{c} a_{1,1} \end{array} \right) $ 의 행렬식은 $a_{1,1}$
- $n=2$일 때,
$ \left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array} \right) $ 의 행렬식은 \(a_{1,1} a_{2,2}-a_{1,2} a_{2,1}\)
- n=3
\(a_{1,1} a_{2,2} a_{3,3}-a_{1,1} a_{2,3} a_{3,2},-a_{1,2} a_{2,1} a_{3,3}+a_{1,2} a_{2,3} a_{3,1}+a_{1,3} a_{2,1} a_{3,2}-a_{1,3} a_{2,2} a_{3,1}\)
예
역사
메모
- http://mathoverflow.net/questions/35988/why-were-matrix-determinants-once-such-a-big-deal
- 벡터의 스칼라 삼중곱
\(\mathbf{a}\cdot(\mathbf{b}\times \mathbf{c})= \mathbf{b}\cdot(\mathbf{c}\times \mathbf{a})= \mathbf{c}\cdot(\mathbf{a}\times \mathbf{b}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ \end{vmatrix}\)
관련된 항목들
- 행렬의 대각합 (trace)
- 벡터의 외적(cross product)
- 외대수(exterior algebra)와 겹선형대수(multilinear algebra)
- 파피안(Pfaffian)
수학용어번역
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxcE4yakhZTzBDYUE/edit
- http://stackoverflow.com/questions/tagged/determinants
- 매스매티카 파일 목록