"MathJax"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) (→관련링크) |
Pythagoras0 (토론 | 기여) |
||
| 11번째 줄: | 11번째 줄: | ||
: definition 2-2 | : definition 2-2 | ||
| − | == | + | ==참조 예== |
*[[맥스웰 방정식]]의 벡터 해석학적 표현 | *[[맥스웰 방정식]]의 벡터 해석학적 표현 | ||
:<math>\iint_{S} \mathbf{E}\cdot\,d\mathbf{S} = \frac {Q} {\varepsilon_0} \label{gau}</math> | :<math>\iint_{S} \mathbf{E}\cdot\,d\mathbf{S} = \frac {Q} {\varepsilon_0} \label{gau}</math> | ||
| 19번째 줄: | 19번째 줄: | ||
| + | |||
| + | ==참조 예== | ||
| + | <!-- some LaTeX macros we want to use: --> | ||
| + | $ | ||
| + | \newcommand{\Re}{\mathrm{Re}\,} | ||
| + | \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)} | ||
| + | $ | ||
| + | |||
| + | We consider, for various values of $s$, the $n$-dimensional integral | ||
| + | \begin{align} | ||
| + | \label{def:Wns} | ||
| + | W_n (s) | ||
| + | &:= | ||
| + | \int_{[0, 1]^n} | ||
| + | \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x} | ||
| + | \end{align} | ||
| + | which occurs in the theory of uniform random walk integrals in the plane, | ||
| + | where at each step a unit-step is taken in a random direction. As such, | ||
| + | the integral \eqref{def:Wns} expresses the $s$-th moment of the distance | ||
| + | to the origin after $n$ steps. | ||
| + | |||
| + | By experimentation and some sketchy arguments we quickly conjectured and | ||
| + | strongly believed that, for $k$ a nonnegative integer | ||
| + | \begin{align} | ||
| + | \label{eq:W3k} | ||
| + | W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}. | ||
| + | \end{align} | ||
| + | Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. | ||
| + | The reason for \eqref{eq:W3k} was long a mystery, but it will be explained | ||
| + | at the end of the paper. | ||
==관련된 항목들== | ==관련된 항목들== | ||
* [[수식표현 안내]] | * [[수식표현 안내]] | ||
2012년 10월 29일 (월) 08:55 판
관련링크
문서 구조
- item 1
- definition 1
- item 2
- definition 2-1
- definition 2-2
참조 예
- 맥스웰 방정식의 벡터 해석학적 표현
\[\iint_{S} \mathbf{E}\cdot\,d\mathbf{S} = \frac {Q} {\varepsilon_0} \label{gau}\] \[\int_{C} \mathbf{E}\cdot\,d\mathbf{r} =-\frac{d}{dt}\iint_{S} \mathbf{B}\cdot\,d\mathbf{S}\label{far} \]
- \ref{gau}를 가우스 법칙이라 한다
- \ref{far}를 패러데이 법칙이라 한다
참조 예
$
\newcommand{\Re}{\mathrm{Re}\,}
\newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
$
We consider, for various values of $s$, the $n$-dimensional integral \begin{align} \label{def:Wns} W_n (s) &:= \int_{[0, 1]^n} \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x} \end{align} which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the $s$-th moment of the distance to the origin after $n$ steps.
By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $k$ a nonnegative integer \begin{align} \label{eq:W3k} W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}. \end{align} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper.