"테일러 전개 문제2"의 두 판 사이의 차이
(사용자 이름 삭제됨) |
(사용자 이름 삭제됨) |
||
1번째 줄: | 1번째 줄: | ||
[http://exactitude.tistory.com/874 앞글]에서 얘기했던 테일러 전개 문제를 조금 다르게 써보려 합니다. 한 번 미분한 항까지만 좀더 일반적으로 써봅니다. | [http://exactitude.tistory.com/874 앞글]에서 얘기했던 테일러 전개 문제를 조금 다르게 써보려 합니다. 한 번 미분한 항까지만 좀더 일반적으로 써봅니다. | ||
− | <math>f(X(x;\epsilon))= f(X(x;0)) + [X(x;\epsilon)-X(x;0)]\frac{df(X(x;\epsilon))}{dX}\Big|_{\epsilon=0}+ \cdots</math> | + | <math>f(X(x;\epsilon))= f(X(x;0)) + [X(x;\epsilon)-X(x;0)]\frac{df(X(x;\epsilon))}{dX}\Big|_{\epsilon=0}+ \cdots</math>( |
− | <math>f(X(x;\epsilon))= f(X(x;0)) + [X(x;\epsilon)-X(x;0)]\frac{ | + | <math>f(X(x;\epsilon))= f(X(x;0)) + [X(x;\epsilon)-X(x;0)]\frac{df(X(x;\epsilon))}{dx}\Big|_{\epsilon=0}+ \cdots</math> |
+ | |||
+ | 문제는 f를 한 번 미분할 때 X로 미분하느냐 x로 미분하느냐입니다. 사실 테일러 전개를 하는 대개의 경우 X(x)는 "x + 매우 작은 어떤 수(또는 함수)" 꼴이므로 '매우 작은 어떤 수'가 상수라면 위 두 식의 결과는 같아집니다. 그런데 그렇지 않은 경우가 문제가 되는 거지요. 위 식에서는 ε이 상수인 것처럼 썼는데 x의 함수일 수도 있습니다. 다음과 같은 예를 들어보겠습니다. | ||
+ | |||
+ | <math>f(x)=e^x,\ X(x;\epsilon)=x+\epsilon(x)</math> | ||
2010년 1월 8일 (금) 22:21 판
앞글에서 얘기했던 테일러 전개 문제를 조금 다르게 써보려 합니다. 한 번 미분한 항까지만 좀더 일반적으로 써봅니다.
\(f(X(x;\epsilon))= f(X(x;0)) + [X(x;\epsilon)-X(x;0)]\frac{df(X(x;\epsilon))}{dX}\Big|_{\epsilon=0}+ \cdots\)(
\(f(X(x;\epsilon))= f(X(x;0)) + [X(x;\epsilon)-X(x;0)]\frac{df(X(x;\epsilon))}{dx}\Big|_{\epsilon=0}+ \cdots\)
문제는 f를 한 번 미분할 때 X로 미분하느냐 x로 미분하느냐입니다. 사실 테일러 전개를 하는 대개의 경우 X(x)는 "x + 매우 작은 어떤 수(또는 함수)" 꼴이므로 '매우 작은 어떤 수'가 상수라면 위 두 식의 결과는 같아집니다. 그런데 그렇지 않은 경우가 문제가 되는 거지요. 위 식에서는 ε이 상수인 것처럼 썼는데 x의 함수일 수도 있습니다. 다음과 같은 예를 들어보겠습니다.
\(f(x)=e^x,\ X(x;\epsilon)=x+\epsilon(x)\)
\(f(x+\epsilon x/y,y+\delta)\)
앞글에서 이걸 어떻게 전개해야 하느냐라는 문제가 있다고 했습니다. 일반적으로 다음처럼 쓸 수 있겠죠.
\(f(X(x,y;\epsilon),Y(x,y;\delta))\)
문제는 테일러 전개를 할 때 이 f를 x로 미분해야 하는지, X로 미분해야 하는지입니다. 앞글에서는 변수가 하나뿐이었으므로 별다른 고민 없이 x로 미분해도 된다고 생각했는데 여기서는 두 개라 헷갈립니다.