"수식 표현 안내"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (Pythagoras0(토론)의 편집을 http://bomber0.myid.net/의 마지막 버전으로 되돌림)
1번째 줄: 1번째 줄:
 +
<h5>원문주소</h5>
  
==HTML 수식표현==
+
* [[수식표현 안내]]
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>HTML 수식표현[http://en.wikipedia.org/wiki/Wikipedia:Mathematical_symbols ]</h5>
  
* http://en.wikipedia.org/wiki/Wikipedia:Mathematical_symbols
 
 
* [[HTML과 유니코드에서의 수식표현]]
 
* [[HTML과 유니코드에서의 수식표현]]
* [[MathJax]]
 
  
==웹상에서의 LaTeX을 통한 수식표현==
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5>웹상에서의 LaTeX을 통한 수식표현</h5>
  
 
*  스프링노트<br>
 
*  스프링노트<br>
25번째 줄: 36번째 줄:
 
** http://geometry.tistory.com/58
 
** http://geometry.tistory.com/58
  
+
 
  
==LaTeX 명령어 입문==
+
<h5>LaTeX 명령어 입문</h5>
  
 
*  특정한 수식표현을 배우는 하나의 방법은 Wikipedia를 이용하는 것<br>
 
*  특정한 수식표현을 배우는 하나의 방법은 Wikipedia를 이용하는 것<br>
35번째 줄: 46번째 줄:
 
* http://en.wikibooks.org/wiki/LaTeX
 
* http://en.wikibooks.org/wiki/LaTeX
  
+
 
  
==모르는 명령어 그림으로 알아내기==
+
<h5>모르는 명령어 그림으로 알아내기</h5>
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
  
+
 
  
+
 
  
==LaTeX으로 노트하기==
+
<h5>LaTeX으로 노트하기</h5>
  
 
* [http://math.berkeley.edu/%7Eanton/index.php?m1=me&m2=TeXadvice Advice on realtime TeXing]
 
* [http://math.berkeley.edu/%7Eanton/index.php?m1=me&m2=TeXadvice Advice on realtime TeXing]
  
+
 
  
+
 
  
 
* 한글 TeX http://ajt.ktug.kr/2007/0102khlee.pdf
 
* 한글 TeX http://ajt.ktug.kr/2007/0102khlee.pdf
  
+
 
==LaTeX 명령예1==
+
 
* <math>\chi(t)=\left(\frac{t}{p}\right)</math>
+
 
* <math>\operatorname{Re} a > 0 </math>
+
 
* <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
+
 
* <math>e^{i \pi} +1 = 0</math>
+
 
* <math>2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}</math>
+
 
* <math>\frac{\sqrt{3}}{5}</math>
+
 
* <math>720\div12=60</math>
+
 
* <math>\large f^\prime(x)\ =        \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}</math>
+
 
* <math>\Large A\ =\ \large\left(        \begin{array}{c.cccc}&1&2&\cdots&n\\      1&a_{11}&a_{12}&\cdots&a_{1n}\\        2&a_{21}&a_{22}&\cdots&a_{2n}\\        \vdots&\vdots&\vdots&\ddots&\vdots\\        n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)</math>
+
==== 하위페이지 ====
 +
 
 +
* [[수식표현 안내]]<br>
 +
** [[그리스문자 및 특수문자모음]]<br>
 +
** [[위에 첨자있는 특수문자]]<br>
 +
** [[집합, 관계, 연산기호]]<br>
 +
** [[행렬과 연립방정식의 수식표현]]<br>
 +
** [[화살표 모음]]<br>
 +
 
 +
 
  
$$ \LARGE\tilde y=\left\{  {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.$$
+
 
  
$$\Large\left.\begin{eqnarray}    x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}$$
+
 
  
* <math>\int e^{-\frac{x^2}{2}} dx</math>
+
* <math>\mathcal{H}om</math>
 +
* <math>G\"odel</math>http://www.phil.cam.ac.uk/teaching_staff/Smith/LaTeX/other-macros/godelcorners.html
  
$$ \int e^{-\frac{x^2}{2}} dx$$
+
<math>\chi(t)=\left(\frac{t}{p}\right)</math>
  
$$e^x=\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n$$
+
<math>\chi(t)=$\left(\frac{t}{p}\right)</math>
  
$\sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}$
+
 
  
$\int_{a}^{b}f(x)dx=F(b)-F(a)$
+
 
  
$\exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}$
+
LaTeX 명령예
  
 +
<math>\today</math>
  
 +
 
  
==LaTeX 명령예2==
+
<math>\operatorname{Re} a > 0 </math>
'''cases'''
 
$$
 
f(n) =
 
\begin{cases}  
 
n/2, & \text{if $n$ is even}\\
 
3n+1, & \text{if $n$ is odd} \\
 
\end{cases}
 
$$
 
  
 +
 
  
'''연립방정식'''
+
* <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
$$ \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right. $$
 
  
 +
# x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
  
'''array'''
+
* <math>e^{i \pi} +1 = 0</math>
$$ \begin{array}{c|lcr} n & \text{Left} & \text{Center} & \text{Right} \\ \hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8 \\ 3 & -20 & 2000 & 1+10i \\ \end{array} $$
 
  
 +
# e^{i\pi}+1=0
  
 +
* <math>2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}</math>
  
'''align'''
+
# 2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}
:<math>
 
\begin{align}
 
& {} \quad \int Y_{l_1}^{m_1}(\theta,\varphi)Y_{l_2}^{m_2}(\theta,\varphi)Y_{l_3}^{m_3}(\theta,\varphi)\,\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi \\
 
=
 
\sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}}
 
\begin{pmatrix}
 
  l_1 & l_2 & l_3 \\[8pt]
 
  0 & 0 & 0
 
\end{pmatrix}
 
\begin{pmatrix}
 
  l_1 & l_2 & l_3\\
 
  m_1 & m_2 & m_3
 
\end{pmatrix}
 
\end{align}
 
</math>
 
  
 +
* <math>\frac{\sqrt{3}}{5}</math>
  
'''underbrace'''
+
# \frac{\sqrt{3}}{5}
:<math>\underbrace{i \hbar \frac{\partial}{\partial t} |\varphi_\pm\rangle = \left( \frac{( \mathbf{p} -e \mathbf A)^2}{2 m} + e \phi \right) \hat 1 \mathbf |\varphi_\pm\rangle }_\mathrm{Schr\ddot{o}dinger~equation} - \underbrace{\frac{e \hbar}{2m}\mathbf{\sigma} \cdot \mathbf B \mathbf |\varphi_\pm\rangle }_\text{Stern Gerlach term}</math>
 
[[파울리 방정식]]
 
  
 +
* <math>720\div12=60</math>
  
 +
# 720\div12=60
  
==목록 관련 명령==
+
* <math>\large f^\prime(x)\ =         \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}</math>
\begin{itemize}
 
\item[a.] Here is one item.
 
\item[b.] Here is another item.
 
  
Note that I have indentation here.
+
# \large f^\prime(x)\ =         \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
  
\item[c.] The last one.
+
* <math>\Large A\ =\ \large\left(        \begin{array}{c.cccc}&1&2&\cdots&n\\        \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\        2&a_{21}&a_{22}&\cdots&a_{2n}\\        \vdots&\vdots&\vdots&\ddots&\vdots\\        n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)</math>
\end{itemize}
 
  
Here is itemize with default bullets:
+
# \Large A\ =\ \large\left(         \begin{array}{c.cccc}&1&2&\cdots&n\\         \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\         2&a_{21}&a_{22}&\cdots&a_{2n}\\         \vdots&\vdots&\vdots&\ddots&\vdots\\         n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)
\begin{itemize}
 
\item Here is one item.
 
\item Here is another item.
 
\end{itemize}
 
  
Here is enumerate:
+
* <math>\LARGE\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.</math>
\begin{enumerate}
 
\item Here is one item.
 
\item Here is one item.
 
\end{enumerate}
 
  
 +
# \LARGE\tilde y=\left\{  {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.
  
 +
# \Large\left.\begin{eqnarray}    x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}
  
 +
* <math>\int e^{-\frac{x^2}{2}} dx</math>
  
== 관련된 항목들 ==
+
# \int%20e^{-\frac{x^2}{2}}%20dx
* [[그리스문자 및 특수문자모음]]
 
* [[위에 첨자있는 특수문자]]
 
* [[집합, 관계, 연산기호]]
 
* [[행렬과 연립방정식의 수식표현]]
 
* [[화살표 모음]]
 
  
==예==
+
<math>e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n</math>
<math>\mathcal{H}om</math>
 
<math>G\"odel</math>
 
http://www.phil.cam.ac.uk/teaching_staff/Smith/LaTeX/other-macros/godelcorners.html
 
  
 +
# e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n
  
 
* <math>\Large\begin{array}{rccclBCB}    &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\    \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\    &u&\longr[75]_\beta&v\end{array}</math>
 
* <math>\Large\begin{array}{rccclBCB}    &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\    \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\    &u&\longr[75]_\beta&v\end{array}</math>
  
# \Large\begin{array}{rccclBCB}   &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\   \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\   &u&\longr[75]_\beta&v\end{array}
+
# \Large\begin{array}{rccclBCB}    &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\    \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\    &u&\longr[75]_\beta&v\end{array}
  
 
* <math>\Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}</math>
 
* <math>\Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}</math>
  
# \Large\overbrace{a,...,a}^{\text{k a^,s}},   \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}   \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},   \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}
+
# \Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}
 +
 
 +
*  
 +
 
 +
*
 +
 
 +
# \sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}
 +
 
 +
*
 +
 
 +
# \int_{a}^{b}f(x)dx=F(b)-F(a)
  
 +
*
  
[[분류:수식표현]]
+
# \exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}

2012년 12월 27일 (목) 02:55 판

원문주소

 

 

HTML 수식표현[1]

 

 

 

웹상에서의 LaTeX을 통한 수식표현

 

LaTeX 명령어 입문

 

모르는 명령어 그림으로 알아내기

 

 

LaTeX으로 노트하기

 

 

 

 

 

 

 

하위페이지

 

 

 

\(\chi(t)=\left(\frac{t}{p}\right)\)

\(\chi(t)=$\left(\frac{t}{p}\right)\)

 

 

LaTeX 명령예

\(\today\)

 

\(\operatorname{Re} a > 0 \)

 

  • \(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
  1. x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
  • \(e^{i \pi} +1 = 0\)
  1. e^{i\pi}+1=0
  • \(2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}\)
  1. 2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}
  • \(\frac{\sqrt{3}}{5}\)
  1. \frac{\sqrt{3}}{5}
  • \(720\div12=60\)
  1. 720\div12=60
  • \(\large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\)
  1. \large f^\prime(x)\ =         \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
  • \(\Large A\ =\ \large\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)\)
  1. \Large A\ =\ \large\left(         \begin{array}{c.cccc}&1&2&\cdots&n\\         \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\         2&a_{21}&a_{22}&\cdots&a_{2n}\\         \vdots&\vdots&\vdots&\ddots&\vdots\\         n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)
  • \(\LARGE\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.\)
  1. \LARGE\tilde y=\left\{  {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.
  1. \Large\left.\begin{eqnarray}    x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}
  • \(\int e^{-\frac{x^2}{2}} dx\)
  1. \int%20e^{-\frac{x^2}{2}}%20dx

\(e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n\)

  1. e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n
  • \(\Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}\)
  1. \Large\begin{array}{rccclBCB}    &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\    \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\    &u&\longr[75]_\beta&v\end{array}
  • \(\Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}\)
  1. \Large\overbrace{a,...,a}^{\text{k a^,s}},    \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10}    \large\underbrace{\overbrace{a...a}^{\text{k a^,s}},    \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}
  •  
  1. \sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}
  1. \int_{a}^{b}f(x)dx=F(b)-F(a)
  1. \exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}