"N차원 공의 부피"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/1942998">다변수미적분학</a>페이지로 이동하였습니다.)
(차이 없음)

2012년 5월 3일 (목) 11:37 판

이 항목의 수학노트 원문주소

 

 

개요
  • 반지름 r인 n차원 공(n-ball)이란, n차원 유클리드 공간에서 다음 부등식을 만족시키는 점들의 집합, 또는 그 평행이동을 말함..
    • \(x_1^2+\cdots+x_n^2\leq\ r^2\)
    • 1차원 공= [-r,r]
    • 2차원 공 = 반지름 r인 원판
  • 1차원 공의 부피는 \(2r\)
  • 2차원 공의 부피는 \(\pi r^2\).
  • 3차원 공의 부피는 \(\frac{4}{3}\pi r^3\).
  • ...
  • n차원 공의 부피는 얼마가 될까? 
    • n이 짝수일 때는, \(\frac{(2\pi)^{n/2}\,r^n}{2 \cdot 4 \cdots n}\)
    • n이 홀수일 때는, \(\frac{2(2\pi)^{(n-1)/2}\,r^n}{1 \cdot 3 \cdots n}\)
    • 일반적으로는 다음 식으로 표현할 수 있다
      \(\large\frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}r^n\)

 

 

공식의 유도
  • 반지름 1인 n-차원 공의 부피를 \(\omega_{n}\) 라 두자
  • 다음 점화식이 성립한다
    \( \omega_{n}=\frac{\sqrt{\pi }\Gamma \left(\frac{n+1}{2}\right)}{\Gamma \left(\frac{n}{2}+1\right)} \omega_{n-1}\)
    \( \omega_{n}=\frac{2\pi}{n}\omega_{n-2}\)

(증명)

\(\omega_{n}=\int\cdots\int_{x_1^2+\cdots+x_n^2\leq\ 1} dx_{1}\cdots dx_{n} = \int_{-1}^{1}(\int\cdots \int_{x_1^2+\cdots +x_{n-1}^2\leq\ \sqrt{1-x_{n}^2}} dx_{1}\cdots dx_{n-1})dx_{n}\)

\(=\int_{-1}^{1} \omega_{n-1} (1-x_{n}^2)^{\frac{n-1}{2}}dx_{n} =\frac{\sqrt{\pi }\Gamma \left(\frac{n+1}{2}\right)}{\Gamma \left(\frac{n}{2}+1\right)} \omega_{n-1}\)

\(\omega_{n}=\int\cdots\int_{x_1^2+\cdots+x_n^2 \leq 1} dx_{1}\cdots dx_{n} = \int_{x_{n-1}^2+x_{n}^2 \leq 1}(\int\cdots \int_{x_1^2+\cdots +x_{n-2}^2\leq\ \sqrt{1-x_{n-1}^2-x_{n}^2}} dx_{1}\cdots dx_{n-2})dx_{n-1} dx_{n}\)

\(=\int_{x_{n-1}^2+x_{n}^2 \leq 1} \omega_{n-2} (1-x_{n-1}^2-x_{n}^2)^{\frac{n-2}{2}}dx_{n-1}dx_{n} = \frac{2\pi}{n}\omega_{n-2}\) ■

 

 

 

\(2,\pi ,\frac{4 \pi }{3},\frac{\pi ^2}{2},\frac{8 \pi ^2}{15},\frac{\pi ^3}{6},\frac{16 \pi ^3}{105},\frac{\pi ^4}{24},\frac{32 \pi ^4}{945},\frac{\pi ^5}{120}, \cdots\)

 

 

관련된 학부 과목과 미리 알고 있으면 좋은 것들

 

 

매스매티카 파일 및 계산 리소스

 

사전형태의 자료

 

 

관련논문