"복소 이차 수체의 데데킨트 제타함수 special values"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
18번째 줄: 18번째 줄:
  
 
* [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]]<br>
 
* [[이차 수체에 대한 디리클레 class number 공식 |이차 수체에 대한 디리클레 class number 공식]]<br>
*  복소이차수체의 경우<br><math>K=\mathbb{Q}(\sqrt{-q})</math>, <math>q \geq 7</math> , <math>q \equiv 3 \pmod{4}</math> 인 경우<br><math>d_K=-q</math><br><math>\chi(a)=\left(\frac{a}{q}\right)</math><br><math>\chi(-1)=-1</math>, <math>\tau(\chi)=i\sqrt{q}</math><br><math>L(1,\chi)= \frac{- \pi\sqrt{q}}{q^2}\sum_{a=1}^{q-1}\left(\frac{a}{q}\right) a=\frac{\pi h_K}{\sqrt{q}}</math><br><math>h_K=-\sum_{a=1}^{q-1}\left(\frac{a}{q}\right)\frac{a}{q}</math><br>  <br><math>K=\mathbb{Q}(\sqrt{-q})</math>  , <math>q \geq 5</math> ,  <math>q \equiv 1 \pmod{4}</math> 인 경우<br><math>d_K=-4q</math><br><math>\chi(-1)=-1</math>, <math>\tau(\chi)=2i\sqrt{q}</math><br><math>L(1,\chi)= -\frac{ \pi\sqrt{q}}{8q^2}\sum_{(a,4q)=1}\chi(a) a=\frac{\pi h_K}{2\sqrt{q}}</math><br><math>h_K=-\frac{1}{4}\sum_{(a,4q)=1}\left(\frac{a}{q}\right)\frac{a}{q}</math><br>
+
*  복소이차수체의 경우:<math>K=\mathbb{Q}(\sqrt{-q})</math>, <math>q \geq 7</math> , <math>q \equiv 3 \pmod{4}</math> 인 경우:<math>d_K=-q</math>:<math>\chi(a)=\left(\frac{a}{q}\right)</math>:<math>\chi(-1)=-1</math>, <math>\tau(\chi)=i\sqrt{q}</math>:<math>L(1,\chi)= \frac{- \pi\sqrt{q}}{q^2}\sum_{a=1}^{q-1}\left(\frac{a}{q}\right) a=\frac{\pi h_K}{\sqrt{q}}</math>:<math>h_K=-\sum_{a=1}^{q-1}\left(\frac{a}{q}\right)\frac{a}{q}</math><br>  :<math>K=\mathbb{Q}(\sqrt{-q})</math>  , <math>q \geq 5</math> ,  <math>q \equiv 1 \pmod{4}</math> 인 경우:<math>d_K=-4q</math>:<math>\chi(-1)=-1</math>, <math>\tau(\chi)=2i\sqrt{q}</math>:<math>L(1,\chi)= -\frac{ \pi\sqrt{q}}{8q^2}\sum_{(a,4q)=1}\chi(a) a=\frac{\pi h_K}{2\sqrt{q}}</math>:<math>h_K=-\frac{1}{4}\sum_{(a,4q)=1}\left(\frac{a}{q}\right)\frac{a}{q}</math><br>
  
 
 
 
 
26번째 줄: 26번째 줄:
 
==<math>s=2</math> 에서의 값==
 
==<math>s=2</math> 에서의 값==
  
*  복소이차수체의 경우<br><math>\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})</math><br><math>\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))</math><br> 여기서 <math>D(z)</math>는 [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)]]<br>
+
*  복소이차수체의 경우:<math>\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})</math>:<math>\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))</math><br> 여기서 <math>D(z)</math>는 [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)]]<br>
*  예<br><math>\zeta_{\mathbb{Q}\sqrt{-1}}(2)=1.50670301</math><br><math>\zeta_{\mathbb{Q}\sqrt{-2}}(2)=1.75141751\cdots</math><br><math>\zeta_{\mathbb{Q}\sqrt{-3}}(2)=\frac{\pi^2}{6\sqrt{3}}(D(e^{2\pi i/3})-D(e^{4\pi i/3}))=\frac{\pi^2}{3\sqrt{3}}D(e^{2\pi i/3})=1.285190955484149\cdots</math><br><math>\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=1.89484145</math><br><math>\zeta_{\mathbb{Q}\sqrt{-11}}(2)=1.49613186</math><br>
+
*  예:<math>\zeta_{\mathbb{Q}\sqrt{-1}}(2)=1.50670301</math>:<math>\zeta_{\mathbb{Q}\sqrt{-2}}(2)=1.75141751\cdots</math>:<math>\zeta_{\mathbb{Q}\sqrt{-3}}(2)=\frac{\pi^2}{6\sqrt{3}}(D(e^{2\pi i/3})-D(e^{4\pi i/3}))=\frac{\pi^2}{3\sqrt{3}}D(e^{2\pi i/3})=1.285190955484149\cdots</math>:<math>\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=1.89484145</math>:<math>\zeta_{\mathbb{Q}\sqrt{-11}}(2)=1.49613186</math><br>
  
 
 
 
 
47번째 줄: 47번째 줄:
 
<math>L_{-3}(2)=\frac{2}{\sqrt{3}}D(e^{\frac{2\pi  i}{3}})</math>
 
<math>L_{-3}(2)=\frac{2}{\sqrt{3}}D(e^{\frac{2\pi  i}{3}})</math>
  
*  2.02988321281930725<br><math>V(4_{1})=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots</math><br>
+
*  2.02988321281930725:<math>V(4_{1})=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots</math><br>
 
* [[매듭이론 (knot theory)]]<br>
 
* [[매듭이론 (knot theory)]]<br>
  
67번째 줄: 67번째 줄:
 
==메모==
 
==메모==
  
* <math>s=1</math> 에서의 <math>L_{d_K}'(1)</math>의 값<br><math>L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})</math><br>
+
* <math>s=1</math> 에서의 <math>L_{d_K}'(1)</math>의 값:<math>L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})</math><br>
 
* [[L-함수의 미분]] 항목 참조<br>
 
* [[L-함수의 미분]] 항목 참조<br>
  

2013년 1월 12일 (토) 09:45 판

이 항목의 수학노트 원문주소

 

 

개요

 

 

 

\(s=1\) 에서의 값

  • 이차 수체에 대한 디리클레 class number 공식
  • 복소이차수체의 경우\[K=\mathbb{Q}(\sqrt{-q})\], \(q \geq 7\) , \(q \equiv 3 \pmod{4}\) 인 경우\[d_K=-q\]\[\chi(a)=\left(\frac{a}{q}\right)\]\[\chi(-1)=-1\], \(\tau(\chi)=i\sqrt{q}\)\[L(1,\chi)= \frac{- \pi\sqrt{q}}{q^2}\sum_{a=1}^{q-1}\left(\frac{a}{q}\right) a=\frac{\pi h_K}{\sqrt{q}}\]\[h_K=-\sum_{a=1}^{q-1}\left(\frac{a}{q}\right)\frac{a}{q}\]
     \[K=\mathbb{Q}(\sqrt{-q})\]  , \(q \geq 5\) ,  \(q \equiv 1 \pmod{4}\) 인 경우\[d_K=-4q\]\[\chi(-1)=-1\], \(\tau(\chi)=2i\sqrt{q}\)\[L(1,\chi)= -\frac{ \pi\sqrt{q}}{8q^2}\sum_{(a,4q)=1}\chi(a) a=\frac{\pi h_K}{2\sqrt{q}}\]\[h_K=-\frac{1}{4}\sum_{(a,4q)=1}\left(\frac{a}{q}\right)\frac{a}{q}\]

 

 

\(s=2\) 에서의 값

  • 복소이차수체의 경우\[\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})\]\[\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))\]
    여기서 \(D(z)\)는 블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)
  • 예\[\zeta_{\mathbb{Q}\sqrt{-1}}(2)=1.50670301\]\[\zeta_{\mathbb{Q}\sqrt{-2}}(2)=1.75141751\cdots\]\[\zeta_{\mathbb{Q}\sqrt{-3}}(2)=\frac{\pi^2}{6\sqrt{3}}(D(e^{2\pi i/3})-D(e^{4\pi i/3}))=\frac{\pi^2}{3\sqrt{3}}D(e^{2\pi i/3})=1.285190955484149\cdots\]\[\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=1.89484145\]\[\zeta_{\mathbb{Q}\sqrt{-11}}(2)=1.49613186\]

 

 

 

 

figure eight knot complement

\(V=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\)

\(\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=\frac{\pi^2}{3\sqrt{3}}D(e^{\frac{2\pi i}{3}})\)

\(L_{-3}(2)=\frac{2}{\sqrt{3}}D(e^{\frac{2\pi i}{3}})\)

  • 2.02988321281930725\[V(4_{1})=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\]
  • 매듭이론 (knot theory)

 

 

역사

 

 

 

메모

  • \(s=1\) 에서의 \(L_{d_K}'(1)\)의 값\[L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})\]
  • L-함수의 미분 항목 참조

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트