"정이십면체 뫼비우스 변환군"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로) |
Pythagoras0 (토론 | 기여) |
||
58번째 줄: | 58번째 줄: | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
− | * [[ | + | * [[수학사 연표]] |
2013년 1월 14일 (월) 19:11 판
이 항목의 수학노트 원문주소
개요
- 정이십면체의 대칭은 교대군 \(A_5\)
- \(G_{60}=\langle S,T|S^5=T^2=(TS)^3=1\rangle\subset \operatorname{PSL}(2,\mathbb{C})\)
생성원
\(S=\left( \begin{array}{cc} \zeta ^3 & 0 \\ 0 & \zeta ^2 \end{array} \right)\) order 5
\(\sqrt{5}T=\left( \begin{array}{cc} \zeta -\zeta ^4 & \zeta ^3-\zeta ^2 \\ \zeta ^3-\zeta ^2 & \zeta ^4-\zeta \end{array} \right)\) order 2
\(W=TS\) : order 3
정이십면체 뫼비우스 변환군의 불변량
- vertex points
- \(V=F_1=z_1z_2(z_1^{10}+11z_1^5z_2^5-z_2^{10})\)
- face points
- \(F=F_2=-(z_1^{20}+z_2^{20})+228(z_1^{15}z_2^{5}-z_1^{5}z_2^{15})-494z_1^{10}z_2^{10}\)
- edge points
- \(E=F_3=(z_1^{30}+z_2^{30})+522(z_1^{25}z_2^{5}-z_1^{5}z_2^{25})-10005(z_1^{20}z_2^{10}+z_1^{10}z_2^{20})\)
- syzygy relation\[1728F_1^5-F_2^3-F_3^2=0\] 또는 \(1728V^5-E^2-F^3=0\)
- \(F_2=HF_1\)
- \(F_3=JF_1\)
complex reflection group
- No. 16
- \(G_{600}\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxTkFfV1dkdjRSLWc/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Icosahedral_group
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트