"구면조화함수(spherical harmonics)"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
==개요== | ==개요== | ||
− | * 3차원 | + | * 3차원 공간에서 정의된 조화다항식의 구면에 제한(restrict)하여 얻어지는 구면 위에 정의되는 함수를 일반적으로 구면조화함수라 함 |
− | * 3차원 회전군 SO(3) | + | * [[3차원 공간의 회전과 SO(3)|3차원 회전군 SO(3)]]의 <math>L^2(S^2)</math> 에서의 표현론으로 이해 |
− | * 양자역학에서 원자모형을 이해하는데 중요한 역할 | + | * 양자역학에서 원자모형을 이해하는데 중요한 역할 |
− | ** [[오비탈 각운동량]] 항목 참조 | + | ** [[오비탈 각운동량]] 항목 참조 |
− | + | ||
− | + | ||
==정의== | ==정의== | ||
* <math>l\in \mathbb{Z}_{\geq 0}</math>, <math>-l \leq m \leq l</math>에 대하여, <math>Y_{l}^{m}(\theta,\phi)</math> | * <math>l\in \mathbb{Z}_{\geq 0}</math>, <math>-l \leq m \leq l</math>에 대하여, <math>Y_{l}^{m}(\theta,\phi)</math> | ||
− | * [[르장드르 다항식(associated Legendre polynomials)]] 을 통해서 다음과 같이 정의됨 :<math>Y_l^m(\theta ,\phi )=\sqrt{(2l+1)/(4\pi )}\sqrt{(l-m)!/(l+m)!}P_l^m(\cos (\theta ))e^{im\phi }</math | + | * [[르장드르 다항식(associated Legendre polynomials)]] 을 통해서 다음과 같이 정의됨 :<math>Y_l^m(\theta ,\phi )=\sqrt{(2l+1)/(4\pi )}\sqrt{(l-m)!/(l+m)!}P_l^m(\cos (\theta ))e^{im\phi }</math> |
− | + | ||
− | + | ||
− | + | ||
==테이블== | ==테이블== | ||
− | * l=0 | + | * l=0 |
<math>\left( \begin{array}{ccc} 0 & 0 & \frac{1}{2 \sqrt{\pi }} \end{array} \right)</math> | <math>\left( \begin{array}{ccc} 0 & 0 & \frac{1}{2 \sqrt{\pi }} \end{array} \right)</math> | ||
− | * l=1 | + | * l=1 |
<math>\left( \begin{array}{ccc} 1 & -1 & \frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{-i \phi } \sin (\theta ) \\ 1 & 0 & \frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) \\ 1 & 1 & -\frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{i \phi } \sin (\theta ) \end{array} \right)</math> | <math>\left( \begin{array}{ccc} 1 & -1 & \frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{-i \phi } \sin (\theta ) \\ 1 & 0 & \frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) \\ 1 & 1 & -\frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{i \phi } \sin (\theta ) \end{array} \right)</math> | ||
− | * l=2 | + | * l=2 |
<math>\left( \begin{array}{ccc} 2 & -2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \\ 2 & -1 & \frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{-i \phi } \sin (\theta ) \cos (\theta ) \\ 2 & 0 & \frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 \cos ^2(\theta )-1\right) \\ 2 & 1 & -\frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{i \phi } \sin (\theta ) \cos (\theta ) \\ 2 & 2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \end{array} \right)</math> | <math>\left( \begin{array}{ccc} 2 & -2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \\ 2 & -1 & \frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{-i \phi } \sin (\theta ) \cos (\theta ) \\ 2 & 0 & \frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 \cos ^2(\theta )-1\right) \\ 2 & 1 & -\frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{i \phi } \sin (\theta ) \cos (\theta ) \\ 2 & 2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \end{array} \right)</math> | ||
− | * l=3 | + | * l=3 |
<math>\left( \begin{array}{ccc} 3 & -3 & \frac{1}{8} \sqrt{\frac{35}{\pi }} e^{-3 i \phi } \sin ^3(\theta ) \\ 3 & -2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\ 3 & -1 & \frac{1}{8} \sqrt{\frac{21}{\pi }} e^{-i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\ 3 & 0 & \frac{1}{4} \sqrt{\frac{7}{\pi }} \left(5 \cos ^3(\theta )-3 \cos (\theta )\right) \\ 3 & 1 & -\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\ 3 & 2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\ 3 & 3 & -\frac{1}{8} \sqrt{\frac{35}{\pi }} e^{3 i \phi } \sin ^3(\theta ) \end{array} \right)</math> | <math>\left( \begin{array}{ccc} 3 & -3 & \frac{1}{8} \sqrt{\frac{35}{\pi }} e^{-3 i \phi } \sin ^3(\theta ) \\ 3 & -2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\ 3 & -1 & \frac{1}{8} \sqrt{\frac{21}{\pi }} e^{-i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\ 3 & 0 & \frac{1}{4} \sqrt{\frac{7}{\pi }} \left(5 \cos ^3(\theta )-3 \cos (\theta )\right) \\ 3 & 1 & -\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\ 3 & 2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\ 3 & 3 & -\frac{1}{8} \sqrt{\frac{35}{\pi }} e^{3 i \phi } \sin ^3(\theta ) \end{array} \right)</math> | ||
− | + | ||
− | + | ||
==내적== | ==내적== | ||
47번째 줄: | 47번째 줄: | ||
<math>\int _0^{2\pi }\int _0^{\pi }Y_l^m(\theta ,\phi ){}^*Y_L^M(\theta ,\phi ) \sin (\theta )d\theta d\phi =\delta _{l,L}\delta _{m,M}.</math> | <math>\int _0^{2\pi }\int _0^{\pi }Y_l^m(\theta ,\phi ){}^*Y_L^M(\theta ,\phi ) \sin (\theta )d\theta d\phi =\delta _{l,L}\delta _{m,M}.</math> | ||
− | + | ||
− | + | ||
==단위구면의 라플라시안== | ==단위구면의 라플라시안== | ||
− | * [[구면(sphere)]], [[라플라시안(Laplacian)]]:<math>\Delta_{S^2} f = {\partial^2 f \over \partial \theta^2} +\cot\theta {\partial f \over \partial \theta} + \frac{1}{ \sin^2 \theta}{\partial^2 f \over \partial \phi^2}</math | + | * [[구면(sphere)]], [[라플라시안(Laplacian)]]:<math>\Delta_{S^2} f = {\partial^2 f \over \partial \theta^2} +\cot\theta {\partial f \over \partial \theta} + \frac{1}{ \sin^2 \theta}{\partial^2 f \over \partial \phi^2}</math> |
− | * 구면조화함수는 라플라시안의 고유벡터이며, 고유치는 <math>-l(l+1)</math> 이다:<math>\Delta_{S^2} Y_{l}^{m}=-l(l+1)Y_{l}^{m}</math | + | * 구면조화함수는 라플라시안의 고유벡터이며, 고유치는 <math>-l(l+1)</math> 이다:<math>\Delta_{S^2} Y_{l}^{m}=-l(l+1)Y_{l}^{m}</math> |
− | + | ||
==덧셈정리== | ==덧셈정리== | ||
* [http://staff.science.uva.nl/~thk/art/sheets/DigitalAge.pdf Algebraic methods: Lie groups, quantum groups] | * [http://staff.science.uva.nl/~thk/art/sheets/DigitalAge.pdf Algebraic methods: Lie groups, quantum groups] | ||
− | + | ||
==각운동량 연산자== | ==각운동량 연산자== | ||
− | * [[오비탈 각운동량]] | + | * [[오비탈 각운동량]] |
− | * <math>L^2 Y_{l}^{m}=l(l+1)\hbar^2Y_{l}^{m}</math | + | * <math>L^2 Y_{l}^{m}=l(l+1)\hbar^2Y_{l}^{m}</math> |
− | * <math>L_z Y_{l}^{m}=m \hbar Y_{l}^{m}</math | + | * <math>L_z Y_{l}^{m}=m \hbar Y_{l}^{m}</math> |
− | + | ||
여기서 | 여기서 | ||
75번째 줄: | 75번째 줄: | ||
<math>L_{z}=-i \hbar \frac{\partial}{\partial \phi }</math> | <math>L_{z}=-i \hbar \frac{\partial}{\partial \phi }</math> | ||
− | + | ||
− | + | ||
==예== | ==예== | ||
− | * <math>l=3,m=1</math> 인 경우:<math>Y_{3}^{1}(\theta,\phi)=-\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right)</math | + | * <math>l=3,m=1</math> 인 경우:<math>Y_{3}^{1}(\theta,\phi)=-\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right)</math> |
− | * <math>L^2 Y_{3}^{1}(\theta,\phi)=12\hbar^2Y_{3}^{1}</math | + | * <math>L^2 Y_{3}^{1}(\theta,\phi)=12\hbar^2Y_{3}^{1}</math> |
− | * <math>L_{z}Y_{3}^{1}(\theta,\phi)=\hbar Y_{3}^{1}</math | + | * <math>L_{z}Y_{3}^{1}(\theta,\phi)=\hbar Y_{3}^{1}</math> |
− | + | ||
==3-j 기호(3-j symbols)의 관계== | ==3-j 기호(3-j symbols)의 관계== | ||
110번째 줄: | 110번째 줄: | ||
* [[수학사 연표]] | * [[수학사 연표]] | ||
− | + | ||
− | + | ||
==메모== | ==메모== | ||
− | + | ||
− | + | ||
==관련된 항목들== | ==관련된 항목들== | ||
− | * [[르장드르 다항식]] | + | * [[르장드르 다항식]] |
− | * [[구면(sphere)]] | + | * [[구면(sphere)]] |
− | + | ||
− | + | ||
==매스매티카 파일 및 계산 리소스== | ==매스매티카 파일 및 계산 리소스== | ||
134번째 줄: | 134번째 줄: | ||
− | ==사전 | + | ==사전 형태의 자료== |
* [http://ko.wikipedia.org/wiki/%EA%B5%AC%EB%A9%B4%EC%A1%B0%ED%99%94%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/구면조화함수] | * [http://ko.wikipedia.org/wiki/%EA%B5%AC%EB%A9%B4%EC%A1%B0%ED%99%94%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/구면조화함수] | ||
140번째 줄: | 140번째 줄: | ||
* http://en.wikipedia.org/wiki/Associated_Legendre_polynomials | * http://en.wikipedia.org/wiki/Associated_Legendre_polynomials | ||
* http://en.wikipedia.org/wiki/Table_of_spherical_harmonics | * http://en.wikipedia.org/wiki/Table_of_spherical_harmonics | ||
+ | |||
+ | |||
+ | ==리뷰논문, 에세이, 강의노트== | ||
+ | * Dai, F., and Y. Xu. 2013. “Spherical Harmonics.” arXiv:1304.2585 (April 9). http://arxiv.org/abs/1304.2585. | ||
+ | |||
+ | |||
[[분류:수리물리학]] | [[분류:수리물리학]] | ||
+ | [[분류:리군과 리대수]] |
2013년 4월 10일 (수) 00:20 판
개요
- 3차원 공간에서 정의된 조화다항식의 구면에 제한(restrict)하여 얻어지는 구면 위에 정의되는 함수를 일반적으로 구면조화함수라 함
- 3차원 회전군 SO(3)의 \(L^2(S^2)\) 에서의 표현론으로 이해
- 양자역학에서 원자모형을 이해하는데 중요한 역할
- 오비탈 각운동량 항목 참조
정의
- \(l\in \mathbb{Z}_{\geq 0}\), \(-l \leq m \leq l\)에 대하여, \(Y_{l}^{m}(\theta,\phi)\)
- 르장드르 다항식(associated Legendre polynomials) 을 통해서 다음과 같이 정의됨 \[Y_l^m(\theta ,\phi )=\sqrt{(2l+1)/(4\pi )}\sqrt{(l-m)!/(l+m)!}P_l^m(\cos (\theta ))e^{im\phi }\]
테이블
- l=0
\(\left( \begin{array}{ccc} 0 & 0 & \frac{1}{2 \sqrt{\pi }} \end{array} \right)\)
- l=1
\(\left( \begin{array}{ccc} 1 & -1 & \frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{-i \phi } \sin (\theta ) \\ 1 & 0 & \frac{1}{2} \sqrt{\frac{3}{\pi }} \cos (\theta ) \\ 1 & 1 & -\frac{1}{2} \sqrt{\frac{3}{2 \pi }} e^{i \phi } \sin (\theta ) \end{array} \right)\)
- l=2
\(\left( \begin{array}{ccc} 2 & -2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \\ 2 & -1 & \frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{-i \phi } \sin (\theta ) \cos (\theta ) \\ 2 & 0 & \frac{1}{4} \sqrt{\frac{5}{\pi }} \left(3 \cos ^2(\theta )-1\right) \\ 2 & 1 & -\frac{1}{2} \sqrt{\frac{15}{2 \pi }} e^{i \phi } \sin (\theta ) \cos (\theta ) \\ 2 & 2 & \frac{1}{4} \sqrt{\frac{15}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \end{array} \right)\)
- l=3
\(\left( \begin{array}{ccc} 3 & -3 & \frac{1}{8} \sqrt{\frac{35}{\pi }} e^{-3 i \phi } \sin ^3(\theta ) \\ 3 & -2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{-2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\ 3 & -1 & \frac{1}{8} \sqrt{\frac{21}{\pi }} e^{-i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\ 3 & 0 & \frac{1}{4} \sqrt{\frac{7}{\pi }} \left(5 \cos ^3(\theta )-3 \cos (\theta )\right) \\ 3 & 1 & -\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right) \\ 3 & 2 & \frac{1}{4} \sqrt{\frac{105}{2 \pi }} e^{2 i \phi } \sin ^2(\theta ) \cos (\theta ) \\ 3 & 3 & -\frac{1}{8} \sqrt{\frac{35}{\pi }} e^{3 i \phi } \sin ^3(\theta ) \end{array} \right)\)
내적
\(\int _0^{2\pi }\int _0^{\pi }Y_l^m(\theta ,\phi ){}^*Y_L^M(\theta ,\phi ) \sin (\theta )d\theta d\phi =\delta _{l,L}\delta _{m,M}.\)
단위구면의 라플라시안
- 구면(sphere), 라플라시안(Laplacian)\[\Delta_{S^2} f = {\partial^2 f \over \partial \theta^2} +\cot\theta {\partial f \over \partial \theta} + \frac{1}{ \sin^2 \theta}{\partial^2 f \over \partial \phi^2}\]
- 구면조화함수는 라플라시안의 고유벡터이며, 고유치는 \(-l(l+1)\) 이다\[\Delta_{S^2} Y_{l}^{m}=-l(l+1)Y_{l}^{m}\]
덧셈정리
각운동량 연산자
- 오비탈 각운동량
- \(L^2 Y_{l}^{m}=l(l+1)\hbar^2Y_{l}^{m}\)
- \(L_z Y_{l}^{m}=m \hbar Y_{l}^{m}\)
여기서
\(L^2=-\hbar ^2 \left(\frac{1}{\sin ^2(\theta )}\frac{\partial^2}{\partial \phi^2}+\frac{1}{\sin (\theta )} \frac{\partial }{\partial \theta }\left(\sin (\theta ) \frac{\partial}{\partial \theta }\right)\right)\)
\(L_{z}=-i \hbar \frac{\partial}{\partial \phi }\)
예
- \(l=3,m=1\) 인 경우\[Y_{3}^{1}(\theta,\phi)=-\frac{1}{8} \sqrt{\frac{21}{\pi }} e^{i \phi } \sin (\theta ) \left(5 \cos ^2(\theta )-1\right)\]
- \(L^2 Y_{3}^{1}(\theta,\phi)=12\hbar^2Y_{3}^{1}\)
- \(L_{z}Y_{3}^{1}(\theta,\phi)=\hbar Y_{3}^{1}\)
3-j 기호(3-j symbols)의 관계
\[ \begin{align} & {} \quad \int Y_{l_1}^{m_1}(\theta,\varphi)Y_{l_2}^{m_2}(\theta,\varphi)Y_{l_3}^{m_3}(\theta,\varphi)\,\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi \\ & = \sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}} \begin{pmatrix} l_1 & l_2 & l_3 \\[8pt] 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l_1 & l_2 & l_3\\ m_1 & m_2 & m_3 \end{pmatrix} \end{align} \]
- 3-j 기호(3-j symbols) 항목 참조
역사
메모
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
- http://ko.wikipedia.org/wiki/구면조화함수
- http://en.wikipedia.org/wiki/spherical_harmonics
- http://en.wikipedia.org/wiki/Associated_Legendre_polynomials
- http://en.wikipedia.org/wiki/Table_of_spherical_harmonics
리뷰논문, 에세이, 강의노트
- Dai, F., and Y. Xu. 2013. “Spherical Harmonics.” arXiv:1304.2585 (April 9). http://arxiv.org/abs/1304.2585.