"대칭곱 (symmetric power)과 대칭텐서"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
5번째 줄: 5번째 줄:
  
 
==행렬의 대칭곱==
 
==행렬의 대칭곱==
* $V$에 작용하는 선형변환 $A$를 생각하자
+
* $V$에 작용하는 선형변환 $A=(a_{ij})$를 생각하자
  
  
20번째 줄: 20번째 줄:
 
  1 & \left(
 
  1 & \left(
 
\begin{array}{cc}
 
\begin{array}{cc}
  a(1,1) & a(1,2) \\
+
  a_{1,1} & a_{1,2} \\
  a(2,1) & a(2,2) \\
+
  a_{2,1} & a_{2,2} \\
 
\end{array}
 
\end{array}
 
\right) \\
 
\right) \\
 
  2 & \left(
 
  2 & \left(
 
\begin{array}{ccc}
 
\begin{array}{ccc}
  a(1,1)^2 & a(1,1) a(1,2) & a(1,2)^2 \\
+
  a_{1,1}^2 & a_{1,1} a_{1,2} & a_{1,2}^2 \\
  2 a(1,1) a(2,1) & a(1,2) a(2,1)+a(1,1) a(2,2) & 2 a(1,2) a(2,2) \\
+
  2 a_{1,1} a_{2,1} & a_{1,2} a_{2,1}+a_{1,1} a_{2,2} & 2 a_{1,2} a_{2,2} \\
  a(2,1)^2 & a(2,1) a(2,2) & a(2,2)^2 \\
+
  a_{2,1}^2 & a_{2,1} a_{2,2} & a_{2,2}^2 \\
 
\end{array}
 
\end{array}
 
\right) \\
 
\right) \\
 
  3 & \left(
 
  3 & \left(
 
\begin{array}{cccc}
 
\begin{array}{cccc}
  a(1,1)^3 & a(1,1)^2 a(1,2) & a(1,1) a(1,2)^2 & a(1,2)^3 \\
+
  a_{1,1}^3 & a_{1,1}^2 a_{1,2} & a_{1,1} a_{1,2}^2 & a_{1,2}^3 \\
  3 a(1,1)^2 a(2,1) & a(2,2) a(1,1)^2+2 a(1,2) a(2,1) a(1,1) & a(2,1) a(1,2)^2+2 a(1,1) a(2,2) a(1,2) & 3 a(1,2)^2 a(2,2) \\
+
  3 a_{1,1}^2 a_{2,1} & a_{2,2} a_{1,1}^2+2 a_{1,2} a_{2,1} a_{1,1} & a_{2,1} a_{1,2}^2+2 a_{1,1} a_{2,2} a_{1,2} & 3 a_{1,2}^2 a_{2,2} \\
  3 a(1,1) a(2,1)^2 & a(1,2) a(2,1)^2+2 a(1,1) a(2,2) a(2,1) & a(1,1) a(2,2)^2+2 a(1,2) a(2,1) a(2,2) & 3 a(1,2) a(2,2)^2 \\
+
  3 a_{1,1} a_{2,1}^2 & a_{1,2} a_{2,1}^2+2 a_{1,1} a_{2,2} a_{2,1} & a_{1,1} a_{2,2}^2+2 a_{1,2} a_{2,1} a_{2,2} & 3 a_{1,2} a_{2,2}^2 \\
  a(2,1)^3 & a(2,1)^2 a(2,2) & a(2,1) a(2,2)^2 & a(2,2)^3 \\
+
  a_{2,1}^3 & a_{2,1}^2 a_{2,2} & a_{2,1} a_{2,2}^2 & a_{2,2}^3 \\
 
\end{array}
 
\end{array}
 
\right) \\
 
\right) \\
 
  4 & \left(
 
  4 & \left(
 
\begin{array}{ccccc}
 
\begin{array}{ccccc}
  a(1,1)^4 & a(1,1)^3 a(1,2) & a(1,1)^2 a(1,2)^2 & a(1,1) a(1,2)^3 & a(1,2)^4 \\
+
  a_{1,1}^4 & a_{1,1}^3 a_{1,2} & a_{1,1}^2 a_{1,2}^2 & a_{1,1} a_{1,2}^3 & a_{1,2}^4 \\
  4 a(1,1)^3 a(2,1) & a(2,2) a(1,1)^3+3 a(1,2) a(2,1) a(1,1)^2 & 2 a(1,2) a(2,2) a(1,1)^2+2 a(1,2)^2 a(2,1) a(1,1) & a(2,1) a(1,2)^3+3 a(1,1) a(2,2) a(1,2)^2 & 4 a(1,2)^3 a(2,2) \\
+
  4 a_{1,1}^3 a_{2,1} & a_{2,2} a_{1,1}^3+3 a_{1,2} a_{2,1} a_{1,1}^2 & 2 a_{1,2} a_{2,2} a_{1,1}^2+2 a_{1,2}^2 a_{2,1} a_{1,1} & a_{2,1} a_{1,2}^3+3 a_{1,1} a_{2,2} a_{1,2}^2 & 4 a_{1,2}^3 a_{2,2} \\
  6 a(1,1)^2 a(2,1)^2 & 3 a(2,1) a(2,2) a(1,1)^2+3 a(1,2) a(2,1)^2 a(1,1) & a(1,2)^2 a(2,1)^2+4 a(1,1) a(1,2) a(2,2) a(2,1)+a(1,1)^2 a(2,2)^2 & 3 a(2,1) a(2,2) a(1,2)^2+3 a(1,1) a(2,2)^2 a(1,2) & 6 a(1,2)^2 a(2,2)^2 \\
+
  6 a_{1,1}^2 a_{2,1}^2 & 3 a_{2,1} a_{2,2} a_{1,1}^2+3 a_{1,2} a_{2,1}^2 a_{1,1} & a_{1,2}^2 a_{2,1}^2+4 a_{1,1} a_{1,2} a_{2,2} a_{2,1}+a_{1,1}^2 a_{2,2}^2 & 3 a_{2,1} a_{2,2} a_{1,2}^2+3 a_{1,1} a_{2,2}^2 a_{1,2} & 6 a_{1,2}^2 a_{2,2}^2 \\
  4 a(1,1) a(2,1)^3 & a(1,2) a(2,1)^3+3 a(1,1) a(2,2) a(2,1)^2 & 2 a(1,2) a(2,2) a(2,1)^2+2 a(1,1) a(2,2)^2 a(2,1) & a(1,1) a(2,2)^3+3 a(1,2) a(2,1) a(2,2)^2 & 4 a(1,2) a(2,2)^3 \\
+
  4 a_{1,1} a_{2,1}^3 & a_{1,2} a_{2,1}^3+3 a_{1,1} a_{2,2} a_{2,1}^2 & 2 a_{1,2} a_{2,2} a_{2,1}^2+2 a_{1,1} a_{2,2}^2 a_{2,1} & a_{1,1} a_{2,2}^3+3 a_{1,2} a_{2,1} a_{2,2}^2 & 4 a_{1,2} a_{2,2}^3 \\
  a(2,1)^4 & a(2,1)^3 a(2,2) & a(2,1)^2 a(2,2)^2 & a(2,1) a(2,2)^3 & a(2,2)^4 \\
+
  a_{2,1}^4 & a_{2,1}^3 a_{2,2} & a_{2,1}^2 a_{2,2}^2 & a_{2,1} a_{2,2}^3 & a_{2,2}^4 \\
 +
\end{array}
 +
\right) \\
 +
\end{array}
 +
$$
 +
 
 +
===$\dim V=3$인 경우===
 +
$$
 +
\begin{array}{c|c}
 +
n & \operatorname{Sym}^nA \\
 +
\hline
 +
0 & \left(
 +
\begin{array}{c}
 +
1 \\
 +
\end{array}
 +
\right) \\
 +
1 & \left(
 +
\begin{array}{ccc}
 +
a_{1,1} & a_{1,2} & a_{1,3} \\
 +
a_{2,1} & a_{2,2} & a_{2,3} \\
 +
a_{3,1} & a_{3,2} & a_{3,3} \\
 +
\end{array}
 +
\right) \\
 +
2 & \left(
 +
\begin{array}{cccccc}
 +
a_{1,1}^2 & a_{1,1} a_{1,2} & a_{1,1} a_{1,3} & a_{1,2}^2 & a_{1,2} a_{1,3} & a_{1,3}^2 \\
 +
2 a_{1,1} a_{2,1} & a_{1,2} a_{2,1}+a_{1,1} a_{2,2} & a_{1,3} a_{2,1}+a_{1,1} a_{2,3} & 2 a_{1,2} a_{2,2} & a_{1,3} a_{2,2}+a_{1,2} a_{2,3} & 2 a_{1,3} a_{2,3} \\
 +
2 a_{1,1} a_{3,1} & a_{1,2} a_{3,1}+a_{1,1} a_{3,2} & a_{1,3} a_{3,1}+a_{1,1} a_{3,3} & 2 a_{1,2} a_{3,2} & a_{1,3} a_{3,2}+a_{1,2} a_{3,3} & 2 a_{1,3} a_{3,3} \\
 +
a_{2,1}^2 & a_{2,1} a_{2,2} & a_{2,1} a_{2,3} & a_{2,2}^2 & a_{2,2} a_{2,3} & a_{2,3}^2 \\
 +
2 a_{2,1} a_{3,1} & a_{2,2} a_{3,1}+a_{2,1} a_{3,2} & a_{2,3} a_{3,1}+a_{2,1} a_{3,3} & 2 a_{2,2} a_{3,2} & a_{2,3} a_{3,2}+a_{2,2} a_{3,3} & 2 a_{2,3} a_{3,3} \\
 +
a_{3,1}^2 & a_{3,1} a_{3,2} & a_{3,1} a_{3,3} & a_{3,2}^2 & a_{3,2} a_{3,3} & a_{3,3}^2 \\
 
\end{array}
 
\end{array}
 
\right) \\
 
\right) \\

2015년 5월 6일 (수) 20:14 판

개요

  • 벡터공간 $V$에 대하여 대칭곱 $\operatorname{Sym}^n V$를 정의할 수 있다
  • $V$에 작용하는 선형변환 $A$에 대하여 $\operatorname{Sym}^n A$를 정의할 수 있다


행렬의 대칭곱

  • $V$에 작용하는 선형변환 $A=(a_{ij})$를 생각하자


$\dim V=2$인 경우

$$ \begin{array}{c|c} n & \operatorname{Sym}^nA \\ \hline 0 & \left( \begin{array}{c} 1 \\ \end{array} \right) \\ 1 & \left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ \end{array} \right) \\ 2 & \left( \begin{array}{ccc} a_{1,1}^2 & a_{1,1} a_{1,2} & a_{1,2}^2 \\ 2 a_{1,1} a_{2,1} & a_{1,2} a_{2,1}+a_{1,1} a_{2,2} & 2 a_{1,2} a_{2,2} \\ a_{2,1}^2 & a_{2,1} a_{2,2} & a_{2,2}^2 \\ \end{array} \right) \\ 3 & \left( \begin{array}{cccc} a_{1,1}^3 & a_{1,1}^2 a_{1,2} & a_{1,1} a_{1,2}^2 & a_{1,2}^3 \\ 3 a_{1,1}^2 a_{2,1} & a_{2,2} a_{1,1}^2+2 a_{1,2} a_{2,1} a_{1,1} & a_{2,1} a_{1,2}^2+2 a_{1,1} a_{2,2} a_{1,2} & 3 a_{1,2}^2 a_{2,2} \\ 3 a_{1,1} a_{2,1}^2 & a_{1,2} a_{2,1}^2+2 a_{1,1} a_{2,2} a_{2,1} & a_{1,1} a_{2,2}^2+2 a_{1,2} a_{2,1} a_{2,2} & 3 a_{1,2} a_{2,2}^2 \\ a_{2,1}^3 & a_{2,1}^2 a_{2,2} & a_{2,1} a_{2,2}^2 & a_{2,2}^3 \\ \end{array} \right) \\ 4 & \left( \begin{array}{ccccc} a_{1,1}^4 & a_{1,1}^3 a_{1,2} & a_{1,1}^2 a_{1,2}^2 & a_{1,1} a_{1,2}^3 & a_{1,2}^4 \\ 4 a_{1,1}^3 a_{2,1} & a_{2,2} a_{1,1}^3+3 a_{1,2} a_{2,1} a_{1,1}^2 & 2 a_{1,2} a_{2,2} a_{1,1}^2+2 a_{1,2}^2 a_{2,1} a_{1,1} & a_{2,1} a_{1,2}^3+3 a_{1,1} a_{2,2} a_{1,2}^2 & 4 a_{1,2}^3 a_{2,2} \\ 6 a_{1,1}^2 a_{2,1}^2 & 3 a_{2,1} a_{2,2} a_{1,1}^2+3 a_{1,2} a_{2,1}^2 a_{1,1} & a_{1,2}^2 a_{2,1}^2+4 a_{1,1} a_{1,2} a_{2,2} a_{2,1}+a_{1,1}^2 a_{2,2}^2 & 3 a_{2,1} a_{2,2} a_{1,2}^2+3 a_{1,1} a_{2,2}^2 a_{1,2} & 6 a_{1,2}^2 a_{2,2}^2 \\ 4 a_{1,1} a_{2,1}^3 & a_{1,2} a_{2,1}^3+3 a_{1,1} a_{2,2} a_{2,1}^2 & 2 a_{1,2} a_{2,2} a_{2,1}^2+2 a_{1,1} a_{2,2}^2 a_{2,1} & a_{1,1} a_{2,2}^3+3 a_{1,2} a_{2,1} a_{2,2}^2 & 4 a_{1,2} a_{2,2}^3 \\ a_{2,1}^4 & a_{2,1}^3 a_{2,2} & a_{2,1}^2 a_{2,2}^2 & a_{2,1} a_{2,2}^3 & a_{2,2}^4 \\ \end{array} \right) \\ \end{array} $$

$\dim V=3$인 경우

$$ \begin{array}{c|c} n & \operatorname{Sym}^nA \\ \hline 0 & \left( \begin{array}{c} 1 \\ \end{array} \right) \\ 1 & \left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \\ \end{array} \right) \\ 2 & \left( \begin{array}{cccccc} a_{1,1}^2 & a_{1,1} a_{1,2} & a_{1,1} a_{1,3} & a_{1,2}^2 & a_{1,2} a_{1,3} & a_{1,3}^2 \\ 2 a_{1,1} a_{2,1} & a_{1,2} a_{2,1}+a_{1,1} a_{2,2} & a_{1,3} a_{2,1}+a_{1,1} a_{2,3} & 2 a_{1,2} a_{2,2} & a_{1,3} a_{2,2}+a_{1,2} a_{2,3} & 2 a_{1,3} a_{2,3} \\ 2 a_{1,1} a_{3,1} & a_{1,2} a_{3,1}+a_{1,1} a_{3,2} & a_{1,3} a_{3,1}+a_{1,1} a_{3,3} & 2 a_{1,2} a_{3,2} & a_{1,3} a_{3,2}+a_{1,2} a_{3,3} & 2 a_{1,3} a_{3,3} \\ a_{2,1}^2 & a_{2,1} a_{2,2} & a_{2,1} a_{2,3} & a_{2,2}^2 & a_{2,2} a_{2,3} & a_{2,3}^2 \\ 2 a_{2,1} a_{3,1} & a_{2,2} a_{3,1}+a_{2,1} a_{3,2} & a_{2,3} a_{3,1}+a_{2,1} a_{3,3} & 2 a_{2,2} a_{3,2} & a_{2,3} a_{3,2}+a_{2,2} a_{3,3} & 2 a_{2,3} a_{3,3} \\ a_{3,1}^2 & a_{3,1} a_{3,2} & a_{3,1} a_{3,3} & a_{3,2}^2 & a_{3,2} a_{3,3} & a_{3,3}^2 \\ \end{array} \right) \\ \end{array} $$

관련된 항목들


사전 형태의 자료


리뷰, 에세이, 강의노트


매스매티카 파일 및 계산 리소스