"실베스터 Denumerant"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(새 문서: * Baldoni, Velleda, Nicole Berline, Jesús De Loera, Brandon Dutra, Matthias Köppe, and Michèle Vergne. “Coefficients of Sylvester’s Denumerant.” arXiv:1312.7147 [math], Decem...)
 
 
1번째 줄: 1번째 줄:
 +
==메모==
 +
* For a given sequence α=[α1,α2,…,αN+1] of N+1 positive integers, we consider the combinatorial function E(α)(t) that counts the nonnegative integer solutions of the equation α1x1+α2x2+⋯+αNxN+αN+1xN+1=t, where the right-hand side t is a varying nonnegative integer. It is well-known that E(α)(t) is a quasi-polynomial function in the variable t of degree N. In combinatorial number theory this function is known as Sylvester's denumerant.
 
* Baldoni, Velleda, Nicole Berline, Jesús De Loera, Brandon Dutra, Matthias Köppe, and Michèle Vergne. “Coefficients of Sylvester’s Denumerant.” arXiv:1312.7147 [math], December 26, 2013. http://arxiv.org/abs/1312.7147.
 
* Baldoni, Velleda, Nicole Berline, Jesús De Loera, Brandon Dutra, Matthias Köppe, and Michèle Vergne. “Coefficients of Sylvester’s Denumerant.” arXiv:1312.7147 [math], December 26, 2013. http://arxiv.org/abs/1312.7147.

2016년 1월 16일 (토) 02:44 기준 최신판

메모

  • For a given sequence α=[α1,α2,…,αN+1] of N+1 positive integers, we consider the combinatorial function E(α)(t) that counts the nonnegative integer solutions of the equation α1x1+α2x2+⋯+αNxN+αN+1xN+1=t, where the right-hand side t is a varying nonnegative integer. It is well-known that E(α)(t) is a quasi-polynomial function in the variable t of degree N. In combinatorial number theory this function is known as Sylvester's denumerant.
  • Baldoni, Velleda, Nicole Berline, Jesús De Loera, Brandon Dutra, Matthias Köppe, and Michèle Vergne. “Coefficients of Sylvester’s Denumerant.” arXiv:1312.7147 [math], December 26, 2013. http://arxiv.org/abs/1312.7147.