"(3,4) Ising minimal model CFT"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/3918271">minimal models</a>페이지로 이동하였습니다.)
1번째 줄: 1번째 줄:
 
<h5>introduction</h5>
 
<h5>introduction</h5>
 +
 +
* [[Ising models|Ising model]]<br>
 +
 +
* first review the [[minimal models]] page
 +
* [[Weber functions and conformal field theory]]<br>
 +
* [[rank 1 case]]<br>
  
 
 
 
 
7번째 줄: 13번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">Ising model as a minimal model</h5>
 
<h5 style="margin: 0px; line-height: 2em;">Ising model as a minimal model</h5>
  
* [[Ising models|Ising model]]<br>
 
 
* first review the [[minimal models]] page
 
 
*  Ising model is a unitary minimal model and thus can be understood by the representation of [[Virasoro algebra|Viraroso algebra]]<br>
 
*  Ising model is a unitary minimal model and thus can be understood by the representation of [[Virasoro algebra|Viraroso algebra]]<br>
 
*  the representation is given by following data<br><math>m= 3</math><br> central charge <math>c = 1-{6\over m(m+1)} = \frac{1}{2}</math><br><math>h_{p,q}(c) = {(4p-3q)^2-1 \over 48}</math><br><math>p= 1,2</math>, <math>q = 1,\cdots p</math><br><math>(p,q)=(1,1), (2,1), (2,2)</math><br>
 
*  the representation is given by following data<br><math>m= 3</math><br> central charge <math>c = 1-{6\over m(m+1)} = \frac{1}{2}</math><br><math>h_{p,q}(c) = {(4p-3q)^2-1 \over 48}</math><br><math>p= 1,2</math>, <math>q = 1,\cdots p</math><br><math>(p,q)=(1,1), (2,1), (2,2)</math><br>
24번째 줄: 27번째 줄:
 
*  associated chiral algebra has three irreducible modules with the following graded dimensions<br><math>\chi_0=q^{-1/48}(1+q^2+q^3+2q^4+2q^5+3q^6+\cdots)</math><br><math>\chi_{\epsilon}=q^{23/48}(1+q+q^2+q^3+2q^4+2q^5+3q^6+\cdots)</math><br><math>\chi_{\sigma}=q^{1/24}(1+q+q^2+2q^3+2q^4+3q^5+4q^6+\cdots)</math><br>
 
*  associated chiral algebra has three irreducible modules with the following graded dimensions<br><math>\chi_0=q^{-1/48}(1+q^2+q^3+2q^4+2q^5+3q^6+\cdots)</math><br><math>\chi_{\epsilon}=q^{23/48}(1+q+q^2+q^3+2q^4+2q^5+3q^6+\cdots)</math><br><math>\chi_{\sigma}=q^{1/24}(1+q+q^2+2q^3+2q^4+3q^5+4q^6+\cdots)</math><br>
 
*  Rocha-Caridi character[RC84] [[bosonic characters of Virasoro minimal models(Rocha-Caridi formula)]]<br>
 
*  Rocha-Caridi character[RC84] [[bosonic characters of Virasoro minimal models(Rocha-Caridi formula)]]<br>
 +
 +
 
 +
 +
<math>\chi_{\sigma}=\chi _{1,2}^{(3,4)}=\chi _{2,2}^{(3,4)}=\frac{\eta (2\tau )}{\eta (\tau )}=q^{1/24}\sum _{m=-\infty }^{\infty } (-1)^mq^{3 m^2- m }=q^{1/24}\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}</math>
 +
 +
<math>\mathfrak{f}_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})=\sqrt{2}q^{1/24}\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}</math>
 +
 +
 
  
 
 
 
 
120번째 줄: 131번째 줄:
  
 
* [[determinantal identities and Airy kernel]]
 
* [[determinantal identities and Airy kernel]]
 +
* [[Weber functions and conformal field theory]]
 +
 +
 
  
 
 
 
 

2011년 6월 15일 (수) 10:45 판

introduction

 

 

Ising model as a minimal model
  • Ising model is a unitary minimal model and thus can be understood by the representation of Viraroso algebra
  • the representation is given by following data
    \(m= 3\)
    central charge \(c = 1-{6\over m(m+1)} = \frac{1}{2}\)
    \(h_{p,q}(c) = {(4p-3q)^2-1 \over 48}\)
    \(p= 1,2\), \(q = 1,\cdots p\)
    \((p,q)=(1,1), (2,1), (2,2)\)
  • possible values of \(h\)
    \(0, 1/2, 1/16\)

 

 

 

graded dimensions
  • associated chiral algebra has three irreducible modules with the following graded dimensions
    \(\chi_0=q^{-1/48}(1+q^2+q^3+2q^4+2q^5+3q^6+\cdots)\)
    \(\chi_{\epsilon}=q^{23/48}(1+q+q^2+q^3+2q^4+2q^5+3q^6+\cdots)\)
    \(\chi_{\sigma}=q^{1/24}(1+q+q^2+2q^3+2q^4+3q^5+4q^6+\cdots)\)
  • Rocha-Caridi character[RC84] bosonic characters of Virasoro minimal models(Rocha-Caridi formula)

 

\(\chi_{\sigma}=\chi _{1,2}^{(3,4)}=\chi _{2,2}^{(3,4)}=\frac{\eta (2\tau )}{\eta (\tau )}=q^{1/24}\sum _{m=-\infty }^{\infty } (-1)^mq^{3 m^2- m }=q^{1/24}\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\)

\(\mathfrak{f}_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})=\sqrt{2}q^{1/24}\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\)

 

 

 

modularity of graded dimensions

\(\chi_M(-1/\tau)=\sum_{N} S_{M,N}\chi_N(\tau)\)

\(\chi_M(\tau+1)=\sum_{N} T_{M,N}\chi_N(\tau)\)

 

\(T=\left(\begin{array}{ccc}e^{-\pi i/24} & 0 & 0 \\ 0 & e^{23\pi i/24} & 0 \\ 0 & 0 & e^{\pi i/12}\end{array} \right)\)

\(2S=\left(\begin{array}{ccc}1 & 1& \sqrt{2} \\ 1 & 1 & -\sqrt{2} \\ \sqrt{2} & -\sqrt{2} & 0\end{array} \right)\)

 

 

matching two sets of funtions

 

\(f(\tau)=\frac{e^{-\frac{\pi i}{24}}\eta(\frac{\tau+1}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})\)

\(\chi_0+\chi_{\epsilon}\)

 

{1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4}

http://www.research.att.com/~njas/sequences/A027349

\(f_1(\tau)=\frac{\eta(\frac{\tau}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1-q^{n-\frac{1}{2}})\)

\(\chi_0-\chi_{\epsilon}\)

{1, -1, 0, -1, 1, -1, 1, -1, 2, -2, 2, -2, 3, -3, 3, -4, 5, -5, 5, -6, 7, -8, 8, -9, 11, -12, 12, -14, 16, -17, 18}

http://www.research.att.com/~njas/sequences/A081362

 

 

\(\chi_0=q^{-1/48}(1+q^2+q^3+2q^4+2q^5+3q^6+\cdots)\)

\(\chi_{\epsilon}=q^{23/48}(1+q+q^2+q^3+2q^4+2q^5+3q^6+\cdots)\)

 

{1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4}

{1, -1, 0, -1, 1, -1, 1, -1, 2, -2, 2, -2, 3, -3, 3, -4, 5, -5, 5, -6, 7, -8, 8, -9, 11, -12, 12, -14, 16, -17, 18}

sum http://www.wolframalpha.com/input/?i=(1,+0,+0,+1,+0,+1,+0,+1,+1,+1)%2B(1,+-1,+0,+-1,+1,+-1,+1,+-1,+2,+-2)

{2,-1,0,0,1,0,1,0,3,...} -> \(q^{-1/48}}(1-1/2q^{1/2}+q^{4/2}+q^{6/2}+3q^{8/2}+\cdots)\)

difference http://www.wolframalpha.com/input/?i=(1,+0,+0,+1,+0,+1,+0,+1,+1,+1)-(1,+-1,+0,+-1,+1,+-1,+1,+-1,+2,+-2)

 

{0,1,0,2,-1,2,-1,2,-1,...} -> \(\frac{1}{2}q^{-1/48}}(q^{1/2}+2q^{3/2}-q^{4/2}+2q^{5/2}-q^{6/2} +2q^{7/2} -q^{8/2}\cdots)\)

 

 

\(f_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})\)

\(\chi_{\sigma}=q^{1/24}(1+q+q^2+2q^3+2q^4+3q^5+4q^6+\cdots)\)

{1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76, 89, 104, 122, 142, 165, 192, 222, 256, 296}

http://www.research.att.com/~njas/sequences/A000009

 

 

history

 

 

related items

 

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

 

blogs

 

 

experts on the field

 

 

links