"(3,4) Ising minimal model CFT"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
==introduction</h5>
+
==introduction==
  
 
* [[Ising models|Ising model]]<br>
 
* [[Ising models|Ising model]]<br>
11번째 줄: 11번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">Ising model as a minimal model</h5>
+
<h5 style="margin: 0px; line-height: 2em;">Ising model as a minimal model==
  
 
*  Ising model is a unitary minimal model and thus can be understood by the representation of [[Virasoro algebra|Viraroso algebra]]<br>
 
*  Ising model is a unitary minimal model and thus can be understood by the representation of [[Virasoro algebra|Viraroso algebra]]<br>
21번째 줄: 21번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">graded dimensions</h5>
+
<h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">graded dimensions==
  
 
*  associated chiral algebra has three irreducible modules with the following graded dimensions<br> h=0, <math>\chi_0=\chi _{1,1}^{(3,4)}=q^{-1/48}(1+q^2+q^3+2q^4+2q^5+3q^6+\cdots)</math><br> h=1/2, <math>\chi_{\epsilon}=\chi_{1,3}^{(3,4)}=q^{23/48}(1+q+q^2+q^3+2q^4+2q^5+3q^6+\cdots)</math><br> h=1/16, <math>\chi_{\sigma}=\chi _{1,2}^{(3,4)}=q^{1/24}(1+q+q^2+2q^3+2q^4+3q^5+4q^6+\cdots)</math><br>
 
*  associated chiral algebra has three irreducible modules with the following graded dimensions<br> h=0, <math>\chi_0=\chi _{1,1}^{(3,4)}=q^{-1/48}(1+q^2+q^3+2q^4+2q^5+3q^6+\cdots)</math><br> h=1/2, <math>\chi_{\epsilon}=\chi_{1,3}^{(3,4)}=q^{23/48}(1+q+q^2+q^3+2q^4+2q^5+3q^6+\cdots)</math><br> h=1/16, <math>\chi_{\sigma}=\chi _{1,2}^{(3,4)}=q^{1/24}(1+q+q^2+2q^3+2q^4+3q^5+4q^6+\cdots)</math><br>
34번째 줄: 34번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">modularity of graded dimensions</h5>
+
<h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">modularity of graded dimensions==
  
 
<math>\chi_M(-1/\tau)=\sum_{N} S_{M,N}\chi_N(\tau)</math>
 
<math>\chi_M(-1/\tau)=\sum_{N} S_{M,N}\chi_N(\tau)</math>
50번째 줄: 50번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">matching two sets of funtions</h5>
+
<h5 style="margin: 0px; line-height: 2em;">matching two sets of funtions==
  
 
* [http://www.research.att.com/%7Enjas/sequences/A000009 http://www.research.att.com/~njas/sequences/A000009]<br>
 
* [http://www.research.att.com/%7Enjas/sequences/A000009 http://www.research.att.com/~njas/sequences/A000009]<br>
114번째 줄: 114번째 줄:
 
 
 
 
  
==history</h5>
+
==history==
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
122번째 줄: 122번째 줄:
 
 
 
 
  
==related items</h5>
+
==related items==
  
 
* [[determinantal identities and Airy kernel]]
 
* [[determinantal identities and Airy kernel]]
133번째 줄: 133번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
  
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
145번째 줄: 145번째 줄:
 
 
 
 
  
==books</h5>
+
==books==
  
 
 
 
 
157번째 줄: 157번째 줄:
 
 
 
 
  
==expositions</h5>
+
==expositions==
  
 
 
 
 
163번째 줄: 163번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
  
 
 
 
 
179번째 줄: 179번째 줄:
 
 
 
 
  
==question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)==
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
191번째 줄: 191번째 줄:
 
 
 
 
  
==blogs</h5>
+
==blogs==
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
202번째 줄: 202번째 줄:
 
 
 
 
  
==experts on the field</h5>
+
==experts on the field==
  
 
* http://arxiv.org/
 
* http://arxiv.org/
210번째 줄: 210번째 줄:
 
 
 
 
  
==links</h5>
+
==links==
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]

2012년 10월 28일 (일) 14:12 판

introduction

 

 

Ising model as a minimal model==
  • Ising model is a unitary minimal model and thus can be understood by the representation of Viraroso algebra
  • the representation is given by following data
    \(m= 3\)
    central charge \(c = 1-{6\over m(m+1)} = \frac{1}{2}\)
    \(h_{p,q}(c) = {(4p-3q)^2-1 \over 48}\)
    \(p= 1,2\), \(q = 1,\cdots p\)
    \((p,q)=(1,1), (2,1), (2,2)\)
    (1,1)=(2,3), (1,2)=(2,2), (1,3)=(2,1)
  • possible values of \(h\)
    \(0, 1/2, 1/16\)
   
graded dimensions==
  • associated chiral algebra has three irreducible modules with the following graded dimensions
    h=0, \(\chi_0=\chi _{1,1}^{(3,4)}=q^{-1/48}(1+q^2+q^3+2q^4+2q^5+3q^6+\cdots)\)
    h=1/2, \(\chi_{\epsilon}=\chi_{1,3}^{(3,4)}=q^{23/48}(1+q+q^2+q^3+2q^4+2q^5+3q^6+\cdots)\)
    h=1/16, \(\chi_{\sigma}=\chi _{1,2}^{(3,4)}=q^{1/24}(1+q+q^2+2q^3+2q^4+3q^5+4q^6+\cdots)\)
  • Rocha-Caridi character[RC84] bosonic characters of Virasoro minimal models(Rocha-Caridi formula)
\(\chi_{\sigma}=\chi _{1,2}^{(3,4)}=\chi _{2,2}^{(3,4)}=\frac{\eta (2\tau )}{\eta (\tau )}=q^{1/24}\sum _{m=-\infty }^{\infty } (-1)^mq^{3 m^2- m }=q^{1/24}\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\) \(\mathfrak{f}_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})=\sqrt{2}q^{1/24}\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\)    
modularity of graded dimensions== \(\chi_M(-1/\tau)=\sum_{N} S_{M,N}\chi_N(\tau)\) \(\chi_M(\tau+1)=\sum_{N} T_{M,N}\chi_N(\tau)\)   \(T=\left(\begin{array}{ccc}e^{-\pi i/24} & 0 & 0 \\ 0 & e^{23\pi i/24} & 0 \\ 0 & 0 & e^{\pi i/12}\end{array} \right)\) \(2S=\left(\begin{array}{ccc}1 & 1& \sqrt{2} \\ 1 & 1 & -\sqrt{2} \\ \sqrt{2} & -\sqrt{2} & 0\end{array} \right)\)    
matching two sets of funtions==   \(f(\tau)=\frac{e^{-\frac{\pi i}{24}}\eta(\frac{\tau+1}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1+q^{n-\frac{1}{2}})\) \(\chi_0+\chi_{\epsilon}=\chi_{1,1}+\chi_{1,3}\)   {1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4} http://www.research.att.com/~njas/sequences/A027349 \(f_1(\tau)=\frac{\eta(\frac{\tau}{2})}{\eta(\tau)}=q^{-1/48} \prod_{n=1}^{\infty} (1-q^{n-\frac{1}{2}})\) \(\chi_0-\chi_{\epsilon}=\chi_{1,1}-\chi_{1,3}\) {1, -1, 0, -1, 1, -1, 1, -1, 2, -2, 2, -2, 3, -3, 3, -4, 5, -5, 5, -6, 7, -8, 8, -9, 11, -12, 12, -14, 16, -17, 18} http://www.research.att.com/~njas/sequences/A081362     \(\chi_0=q^{-1/48}(1+q^2+q^3+2q^4+2q^5+3q^6+\cdots)\) \(\chi_{\epsilon}=q^{23/48}(1+q+q^2+q^3+2q^4+2q^5+3q^6+\cdots)\)   {1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4} {1, -1, 0, -1, 1, -1, 1, -1, 2, -2, 2, -2, 3, -3, 3, -4, 5, -5, 5, -6, 7, -8, 8, -9, 11, -12, 12, -14, 16, -17, 18} sum http://www.wolframalpha.com/input/?i=(1,+0,+0,+1,+0,+1,+0,+1,+1,+1)%2B(1,+-1,+0,+-1,+1,+-1,+1,+-1,+2,+-2) {2,-1,0,0,1,0,1,0,3,...} -> \(q^{-1/48}}(1-1/2q^{1/2}+q^{4/2}+q^{6/2}+3q^{8/2}+\cdots)\) difference http://www.wolframalpha.com/input/?i=(1,+0,+0,+1,+0,+1,+0,+1,+1,+1)-(1,+-1,+0,+-1,+1,+-1,+1,+-1,+2,+-2)   {0,1,0,2,-1,2,-1,2,-1,...} -> \(\frac{1}{2}q^{-1/48}}(q^{1/2}+2q^{3/2}-q^{4/2}+2q^{5/2}-q^{6/2} +2q^{7/2} -q^{8/2}\cdots)\)     \(f_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})\) \(\chi_{\sigma}=\chi_{1,2}=q^{1/24}(1+q+q^2+2q^3+2q^4+3q^5+4q^6+\cdots)\) {1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76, 89, 104, 122, 142, 165, 192, 222, 256, 296} http://www.research.att.com/~njas/sequences/A000009    

history

 

 

related items

 

 

 

encyclopedia==    

books

 

 

 

expositions

 

 

articles==      

question and answers(Math Overflow)

 

 

 

blogs

 

 

experts on the field

 

 

links