"Affine Kac-Moody algebras as central extensions of loop algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==introduction== * Construct the loop algebra from a finite dimensional Lie algebra * Make a central extension * Add a outer derivation to compensate the degeneracy of the Cartan matr...)
 
imported>Pythagoras0
22번째 줄: 22번째 줄:
  
  
 +
==related items==
 +
* [[Central extension of groups and Lie algebras]]
 +
* [[Heisenberg group and Heisenberg algebra]]
  
 
[[분류:Lie theory]]
 
[[분류:Lie theory]]

2015년 3월 18일 (수) 21:23 판

introduction

  • Construct the loop algebra from a finite dimensional Lie algebra
  • Make a central extension
  • Add a outer derivation to compensate the degeneracy of the Cartan matrix


explicit construction

  • start with a semisimple Lie algebra $\mathfrak{g}$ with invariant form $\langle \cdot,\cdot\rangle $
  • make a vector space from it
  • construct the loop algbera

$$\hat{\mathfrak{g}}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$$ $$\alpha(m)=\alpha\otimes t^m$$

  • Add a central element to get a central extension and give a bracket

$$\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c$$ $$[\alpha(m),\beta(n)]=[\alpha,\beta]\otimes t^{m+n}+m\delta_{m,-n}\langle \alpha,\beta\rangle c$$ $$[c,x] =0, x\in \hat{\mathfrak{g}}$$

  • add a derivation $d=t\frac{d}{dt}$ to get

$$\tilde{\mathfrak{g}}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d$$

  • define a Lie bracket

$$[d,x]:=d(x)$$ where $d(\alpha(n))=n\alpha(n), d(c)=0$


related items