"Z k parafermion theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
5번째 줄: 5번째 줄:
 
* the highest-weight modules are parametrized by an integer (Dynkin label) l with <math>0\leq l < k</math>
 
* the highest-weight modules are parametrized by an integer (Dynkin label) l with <math>0\leq l < k</math>
 
* <math>\mathbb{Z}_k</math> parafermion theory is known to be equivalent to the coset <math>\hat{\text{su}}(2)_k/\hat{u}(1)</math>
 
* <math>\mathbb{Z}_k</math> parafermion theory is known to be equivalent to the coset <math>\hat{\text{su}}(2)_k/\hat{u}(1)</math>
* Kac and Petersen obtained expression for the parafe
+
* Kac and Petersen obtained expression for the parafermion characters
 +
* Lepowsky-Primc expression in fermionic form
 +
* third expression
  
 
 
 
 
66번째 줄: 68번째 줄:
  
 
* Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” <em>1103.4986</em> (March 25). http://arxiv.org/abs/1103.4986
 
* Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” <em>1103.4986</em> (March 25). http://arxiv.org/abs/1103.4986
* Fortin, J. -F, P. Mathieu와/과S. O Warnaar. 2006. “Characters of graded parafermion conformal field theory”. <em>hep-th/0602248</em> (2월 23). http://arxiv.org/abs/hep-th/0602248<br>
+
* Fortin, J. -F, P. Mathieu와/과S. O Warnaar. 2006. “Characters of graded parafermion conformal field theory”. <em>hep-th/0602248</em> (2월 23). [http://arxiv.org/abs/hep-th/0602248 ]http://arxiv.org/abs/hep-th/0602248
 +
* [http://arxiv.org/abs/math/9906092 Conjugate Bailey pairs. From configuration sums and fractional-level string functions to Bailey's lemma.],Anne Schilling, S. Ole Warnaar, 1999
 
* [http://dx.doi.org/10.1007/BFb0105250 Spinons and parafermions in fermion cosets]<br>
 
* [http://dx.doi.org/10.1007/BFb0105250 Spinons and parafermions in fermion cosets]<br>
 
**  D. C. Cabra, Lecture Notes in Physics, 1998, Volume 509/1998, 220-229<br>
 
**  D. C. Cabra, Lecture Notes in Physics, 1998, Volume 509/1998, 220-229<br>

2011년 6월 23일 (목) 06:54 판

introduction
  • parafermionic Hilbert space
  • defined by the algebra of parafermionic fields \(\psi_1\) and \(\psi _1^{\dagger }\) of dimension 1-1/k and central charge 2(k-1)/(k+2)
  • the highest-weight modules are parametrized by an integer (Dynkin label) l with \(0\leq l < k\)
  • \(\mathbb{Z}_k\) parafermion theory is known to be equivalent to the coset \(\hat{\text{su}}(2)_k/\hat{u}(1)\)
  • Kac and Petersen obtained expression for the parafermion characters
  • Lepowsky-Primc expression in fermionic form
  • third expression

 

 

history

 

 

related items

 

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links