"Z k parafermion theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction</h5>
  
 
* parafermionic Hilbert space
 
* parafermionic Hilbert space
13번째 줄: 13번째 줄:
 
 
 
 
  
<h5><math>\mathbb{Z}_{n+1}</math> theory</h5>
+
==<math>\mathbb{Z}_{n+1}</math> theory</h5>
  
 
*  central charge<br><math>\frac{2n}{n+3}</math><br>
 
*  central charge<br><math>\frac{2n}{n+3}</math><br>
23번째 줄: 23번째 줄:
 
 
 
 
  
<h5>history</h5>
+
==history</h5>
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
31번째 줄: 31번째 줄:
 
 
 
 
  
<h5>related items</h5>
+
==related items</h5>
  
 
* [[modular invariant partition functions|CFT on torus and modular invariant partition functions]]
 
* [[modular invariant partition functions|CFT on torus and modular invariant partition functions]]
54번째 줄: 54번째 줄:
 
 
 
 
  
<h5>books</h5>
+
==books</h5>
  
 
 
 
 
67번째 줄: 67번째 줄:
 
 
 
 
  
<h5>expositions</h5>
+
==expositions</h5>
  
 
 
 
 
102번째 줄: 102번째 줄:
 
 
 
 
  
<h5>question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)</h5>
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
111번째 줄: 111번째 줄:
 
 
 
 
  
<h5>blogs</h5>
+
==blogs</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
122번째 줄: 122번째 줄:
 
 
 
 
  
<h5>experts on the field</h5>
+
==experts on the field</h5>
  
 
* http://arxiv.org/
 
* http://arxiv.org/
130번째 줄: 130번째 줄:
 
 
 
 
  
<h5>links</h5>
+
==links</h5>
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]

2012년 10월 28일 (일) 14:07 판

==introduction

  • parafermionic Hilbert space
  • defined by the algebra of parafermionic fields \(\psi_1\) and \(\psi _1^{\dagger }\) of dimension 1-1/k and central charge 2(k-1)/(k+2)
  • the highest-weight modules are parametrized by an integer (Dynkin label) l with \(0\leq l < k\)
  • \(\mathbb{Z}_k\) parafermion theory is known to be equivalent to the coset \(\hat{\text{su}}(2)_k/\hat{u}(1)\)
  • Kac and Petersen (1984) obtained expression for the parafermion characters
  • Lepowsky-Primc (1985) expression in fermionic form
  • third expression

 

 

==\(\mathbb{Z}_{n+1}\) theory

  • central charge
    \(\frac{2n}{n+3}\)

 

 

 

==history

 

 

==related items

 

 

 

encyclopedia

 

 

==books

 

 

 

==expositions

 

 

 

articles

 

 

==question and answers(Math Overflow)

 

 

==blogs

 

 

==experts on the field

 

 

==links