"Z k parafermion theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
5번째 줄: 5번째 줄:
 
* the highest-weight modules are parametrized by an integer (Dynkin label) l with <math>0\leq l < k</math>
 
* the highest-weight modules are parametrized by an integer (Dynkin label) l with <math>0\leq l < k</math>
 
* <math>\mathbb{Z}_k</math> parafermion theory is known to be equivalent to the coset <math>\hat{\text{su}}(2)_k/\hat{u}(1)</math>
 
* <math>\mathbb{Z}_k</math> parafermion theory is known to be equivalent to the coset <math>\hat{\text{su}}(2)_k/\hat{u}(1)</math>
* Kac and Petersen (1984) obtained expression for the parafermion characters
+
* Kac and Peterson (1984) obtained expression for the parafermion characters
 
* Lepowsky-Primc (1985) expression in fermionic form
 
* Lepowsky-Primc (1985) expression in fermionic form
 
* third expression
 
* third expression
32번째 줄: 32번째 줄:
  
 
==related items==
 
==related items==
 
+
* [[String functions and branching functions]]
 
* [[modular invariant partition functions|CFT on torus and modular invariant partition functions]]
 
* [[modular invariant partition functions|CFT on torus and modular invariant partition functions]]
 
* [[Ising models]]
 
* [[Ising models]]
48번째 줄: 48번째 줄:
 
* Gepner, Doron, and Zongan Qiu. 1987. “Modular Invariant Partition Functions for Parafermionic Field Theories.” Nuclear Physics B 285: 423–453. doi:[http://dx.doi.org/10.1016/0550-3213%2887%2990348-8 10.1016/0550-3213(87)90348-8].
 
* Gepner, Doron, and Zongan Qiu. 1987. “Modular Invariant Partition Functions for Parafermionic Field Theories.” Nuclear Physics B 285: 423–453. doi:[http://dx.doi.org/10.1016/0550-3213%2887%2990348-8 10.1016/0550-3213(87)90348-8].
 
* Gepner, Doron. 1987. “New Conformal Field Theories Associated with Lie Algebras and Their Partition Functions.” Nuclear Physics B 290: 10–24. doi:[http://dx.doi.org/10.1016/0550-3213(87)90176-3 10.1016/0550-3213(87)90176-3].
 
* Gepner, Doron. 1987. “New Conformal Field Theories Associated with Lie Algebras and Their Partition Functions.” Nuclear Physics B 290: 10–24. doi:[http://dx.doi.org/10.1016/0550-3213(87)90176-3 10.1016/0550-3213(87)90176-3].
* [http://dx.doi.org/10.1016/0001-8708%2884%2990032-X Infinite-dimensional Lie algebras, theta functions and modular forms.],Kac, V.G., Peterson, D.H., Adv. Math.53, 125 (1984)
+
* Kac, Victor G, and Dale H Peterson. 1984. “Infinite-dimensional Lie Algebras, Theta Functions and Modular Forms.” Advances in Mathematics 53 (2) (August): 125–264. doi:[http://dx.doi.org/10.1016/0001-8708%2884%2990032-X 10.1016/0001-8708(84)90032-X].
  
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:thesis]]
 
[[분류:thesis]]
 
[[분류:conformal field theory]]
 
[[분류:conformal field theory]]

2013년 7월 11일 (목) 05:16 판

introduction

  • parafermionic Hilbert space
  • defined by the algebra of parafermionic fields \(\psi_1\) and \(\psi _1^{\dagger }\) of dimension 1-1/k and central charge 2(k-1)/(k+2)
  • the highest-weight modules are parametrized by an integer (Dynkin label) l with \(0\leq l < k\)
  • \(\mathbb{Z}_k\) parafermion theory is known to be equivalent to the coset \(\hat{\text{su}}(2)_k/\hat{u}(1)\)
  • Kac and Peterson (1984) obtained expression for the parafermion characters
  • Lepowsky-Primc (1985) expression in fermionic form
  • third expression



\(\mathbb{Z}_{n+1}\) theory

  • central charge\(\frac{2n}{n+3}\)




history



related items


articles