"Z k parafermion theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
50번째 줄: 50번째 줄:
 
[[분류:thesis]]
 
[[분류:thesis]]
 
[[분류:conformal field theory]]
 
[[분류:conformal field theory]]
 +
[[분류:migrate]]

2020년 11월 12일 (목) 21:37 판

introduction

  • parafermionic Hilbert space
  • defined by the algebra of parafermionic fields \(\psi_1\) and \(\psi _1^{\dagger }\) of dimension 1-1/k and central charge

$$c=\frac{k \dim \mathfrak{g}}{k+h^{\vee}}-\operatorname{rank}\mathfrak{g}=\frac{3k}{k+2}-1=\frac{2(k-1)}{(k+2)}$$ where $\mathfrak{g}=\mathfrak{sl}_2$ and $k=2$

  • the highest-weight modules are parametrized by an integer (Dynkin label) $l$ with \(0\leq l < k\)
  • \(\mathbb{Z}_k\) parafermion theory is known to be equivalent to the coset \(\hat{\text{su}}(2)_k/\hat{u}(1)_k\)
  • Kac and Peterson (1984) obtained expression for the parafermion characters
  • Lepowsky-Primc (1985) expression in fermionic form
  • third expression

examples


\(\mathbb{Z}_{n+1}\) theory

  • central charge\(\frac{2n}{n+3}\)


history



related items


computational resource


expositions


articles

  • Bianchini, Davide, Elisa Ercolessi, Paul A. Pearce, and Francesco Ravanini. ‘RSOS Quantum Chains Associated with Off-Critical Minimal Models and $\mathbb{Z}_n$ Parafermions’. arXiv:1412.4942 [cond-Mat, Physics:hep-Th, Physics:math-Ph], 16 December 2014. http://arxiv.org/abs/1412.4942.
  • Fateev, V. A., and Al. B. Zamolodchikov. “Integrable Perturbations of ZN Parafermion Models and the O(3) Sigma Model.” Physics Letters B 271, no. 1–2 (November 14, 1991): 91–100. doi:10.1016/0370-2693(91)91283-2.
  • Bilal, Adel. “Bosonization of ZN Parafermions and su(2)N KAČ-Moody Algebra.” Physics Letters B 226, no. 3–4 (August 10, 1989): 272–78. doi:10.1016/0370-2693(89)91194-5.