"Ramanujan's Cubic Continued fractions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 Ramanujan's Cubic Continued fractions 로 바꾸었습니다.)
1번째 줄: 1번째 줄:
FROM A RAMANUJAN-SELBERG CONTINUED FRACTION<br> TO A JACOBIAN IDENTITY
+
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction</h5>
  
 
 
 
 
  
 
 
 
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">history</h5>
 +
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">related items</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">encyclopedia</h5>
 +
 +
* http://en.wikipedia.org/wiki/
 +
* http://www.scholarpedia.org/
 +
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">books</h5>
 +
 +
 
 +
 +
* [[2010년 books and articles]]<br>
 +
* http://gigapedia.info/1/
 +
* http://gigapedia.info/1/
 +
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 +
 +
[[4909919|]]
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5>
  
 
 
 
 
  
RAMANUJAN’S CUBIC CONTINUED FRACTION AND RAMANUJAN TYPE CONGRUENCES FOR A CERTAIN PARTITION FUNCTION
+
* [http://www.ams.org/proc/0000-000-00/S0002-9939-09-09835-9/S0002-9939-09-09835-9.pdf FROM A RAMANUJAN-SELBERG CONTINUED FRACTION TO A JACOBIAN IDENTITY]<br>
  
HEI-CHI CHAN
+
*  RAMANUJAN’S CUBIC CONTINUED FRACTION AND RAMANUJAN TYPE CONGRUENCES FOR A CERTAIN PARTITION FUNCTIONHEI-CHI CHAN<br>
  
 
 
 
 
24번째 줄: 65번째 줄:
  
 
Liang-Cheng Zhang
 
Liang-Cheng Zhang
 +
 +
 
 +
 +
 
  
 
 
 
 
  
 
http://matwbn.icm.edu.pl/ksiazki/aa/aa43/aa4331.pdf
 
http://matwbn.icm.edu.pl/ksiazki/aa/aa43/aa4331.pdf
 +
 +
http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
[http://arxiv.org/abs/math/0502323 On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions]
 +
 +
[http://arxiv.org/abs/math/0502323 ]C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005
 +
 +
 
 +
 +
 
 +
 +
Ramanujan's class invariants and cubic continued fraction
 +
 +
Berndt, 1995<br>
 +
 +
* http://www.ams.org/mathscinet
 +
* [http://www.zentralblatt-math.org/zmath/en/ ]http://www.zentralblatt-math.org/zmath/en/
 +
* http://arxiv.org/
 +
* http://www.pdf-search.org/
 +
* http://pythagoras0.springnote.com/
 +
* http://math.berkeley.edu/~reb/papers/index.html
 +
* http://dx.doi.org/
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">question and answers(Math Overflow)</h5>
 +
 +
* http://mathoverflow.net/search?q=
 +
* http://mathoverflow.net/search?q=
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">blogs</h5>
 +
 +
*  구글 블로그 검색<br>
 +
** http://blogsearch.google.com/blogsearch?q=
 +
** http://blogsearch.google.com/blogsearch?q=
 +
* http://ncatlab.org/nlab/show/HomePage
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">experts on the field</h5>
 +
 +
* http://arxiv.org/
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">links</h5>
 +
 +
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 +
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 +
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 +
* http://functions.wolfram.com/
 +
*

2010년 7월 16일 (금) 19:38 판

introduction

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

  • RAMANUJAN’S CUBIC CONTINUED FRACTION AND RAMANUJAN TYPE CONGRUENCES FOR A CERTAIN PARTITION FUNCTIONHEI-CHI CHAN

 

A NEW PROOF FOR TWO IDENTITIES INVOLVING RAMANUJAN’S CUBIC CONTINUED FRACTION
HEI-CHI CHAN

 

On Ramanujan’s cubic continued fraction by
Heng Huat Chan (Urbana, Ill.)

 

Explicit evaluations of a Ramanujan-Selberg continued fraction

Liang-Cheng Zhang

 

 

 

http://matwbn.icm.edu.pl/ksiazki/aa/aa43/aa4331.pdf

http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf

 

 

 

On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions

[1]C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005

 

 

Ramanujan's class invariants and cubic continued fraction

Berndt, 1995

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links