"Ramanujan's Cubic Continued fractions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
46번째 줄: 46번째 줄:
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5>
  
 
+
*  RAMANUJAN’S CUBIC CONTINUED FRACTION AND RAMANUJAN TYPE CONGRUENCES FOR A CERTAIN PARTITION FUNCTION<br>
 
+
**  HEI-CHI CHAN<br>
* [http://www.ams.org/proc/0000-000-00/S0002-9939-09-09835-9/S0002-9939-09-09835-9.pdf FROM A RAMANUJAN-SELBERG CONTINUED FRACTION TO A JACOBIAN IDENTITY]<br>
+
A NEW PROOF FOR TWO IDENTITIES INVOLVING RAMANUJAN’S CUBIC CONTINUED FRACTION<br>
 
+
**  HEI-CHI CHAN<br>
*  RAMANUJAN’S CUBIC CONTINUED FRACTION AND RAMANUJAN TYPE CONGRUENCES FOR A CERTAIN PARTITION FUNCTIONHEI-CHI CHAN<br>
+
On Ramanujan’s cubic continued fraction<br>
 
+
**  Heng Huat Chan (Urbana, Ill.)<br>
 
 
 
 
A NEW PROOF FOR TWO IDENTITIES INVOLVING RAMANUJAN’S CUBIC CONTINUED FRACTION<br> HEI-CHI CHAN
 
 
 
 
 
 
 
On Ramanujan’s cubic continued fraction by<br> Heng Huat Chan (Urbana, Ill.)
 
  
 
 
 
 
 
[http://www.ams.org/proc/2002-130-01/S0002-9939-01-06183-4/home.html Explicit evaluations of a Ramanujan-Selberg continued fraction]
 
 
Liang-Cheng Zhang
 
 
 
 
 
 
 
 
 
 
 
http://matwbn.icm.edu.pl/ksiazki/aa/aa43/aa4331.pdf
 
  
 
http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf
 
http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf

2010년 7월 16일 (금) 19:43 판

introduction

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles
  • RAMANUJAN’S CUBIC CONTINUED FRACTION AND RAMANUJAN TYPE CONGRUENCES FOR A CERTAIN PARTITION FUNCTION
    • HEI-CHI CHAN
  • A NEW PROOF FOR TWO IDENTITIES INVOLVING RAMANUJAN’S CUBIC CONTINUED FRACTION
    • HEI-CHI CHAN
  • On Ramanujan’s cubic continued fraction
    • Heng Huat Chan (Urbana, Ill.)

 

http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf

 

 

 

On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions

[1]C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005

 

 

Ramanujan's class invariants and cubic continued fraction

Berndt, 1995

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links