"Ramanujan's Cubic Continued fractions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction</h5>
  
<math>{1 \over 1+} {q+q^2 \over 1+} {q^4 \over 1+} {q^3+q^6 \over 1+}{q^8 \over 1+\cdots} =\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}</math>
+
<math>{1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} </math>
 +
 
 +
 
  
 
 
 
 
53번째 줄: 55번째 줄:
 
*  A NEW PROOF FOR TWO IDENTITIES INVOLVING RAMANUJAN’S CUBIC CONTINUED FRACTION<br>
 
*  A NEW PROOF FOR TWO IDENTITIES INVOLVING RAMANUJAN’S CUBIC CONTINUED FRACTION<br>
 
**  HEI-CHI CHAN<br>
 
**  HEI-CHI CHAN<br>
* On Ramanujan’s cubic continued fraction<br>
+
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7343.pdf On Ramanujan’s cubic continued fraction]<br>
**  Heng Huat Chan (Urbana, Ill.)<br>
+
**  Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)<br>
 
 
 
 
  
 
http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf
 
http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf

2010년 7월 22일 (목) 04:31 판

introduction

\({1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} \)

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles
  • RAMANUJAN’S CUBIC CONTINUED FRACTION AND RAMANUJAN TYPE CONGRUENCES FOR A CERTAIN PARTITION FUNCTION
    • HEI-CHI CHAN
  • A NEW PROOF FOR TWO IDENTITIES INVOLVING RAMANUJAN’S CUBIC CONTINUED FRACTION
    • HEI-CHI CHAN
  • On Ramanujan’s cubic continued fraction
    • Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)

http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf

 

 

Ramanujan's class invariants and cubic continued fraction

Berndt, 1995

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links